Inkjet-printed copper electrodes using photonic sintering and their application to organic thin-film transistors

Abstract We report on copper (Cu) electrodes fabricated with inkjet-printed nanoparticle inks that are photonic sintered on a polymer dielectric layer and their application to source and drain electrodes in organic thin-film transistor (TFT). By using photonic sintering with a radiant energy density of 9 J/cm 2 , printed Cu nanoparticle layers on a glass substrate showed very low electrical resistivity levels of 7 μΩ cm. By optimizing the sintering conditions on polymer dielectric, the pentacene-based TFT using these printed Cu electrodes showed good mobility levels of 0.13 cm 2 /Vs and high on/off current ratios of about 10 6 . In addition, we revealed that the crystal grain growth of pentacene near the printed Cu electrodes was inhibited by the thermal damage of polymer underlayer due to the high radiant energy density of the intense light.

[1]  Yong-Won Song,et al.  Multi-pulsed white light sintering of printed Cu nanoinks , 2011, Nanotechnology.

[2]  Lei Zhang,et al.  Interfacial Heterogeneity of Surface Energy in Organic Field‐Effect Transistors , 2011, Advanced materials.

[3]  Gábor Harsányi,et al.  Comparing migratory resistive short formation abilities of conductor systems applied in advanced interconnection systems , 2001, Microelectron. Reliab..

[4]  M. Jha,et al.  Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. , 2013, ACS applied materials & interfaces.

[5]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[6]  K. Kudo,et al.  High‐Performance Bottom‐Contact Organic Thin‐Film Transistors with Controlled Molecule‐Crystal/Electrode Interface , 2007 .

[7]  S. Bauer,et al.  An All‐Printed Ferroelectric Active Matrix Sensor Network Based on Only Five Functional Materials Forming a Touchless Control Interface , 2011, Advanced materials.

[8]  J. Jang,et al.  Fabrication of Water‐Dispersible Polyaniline‐Poly(4‐styrenesulfonate) Nanoparticles For Inkjet‐Printed Chemical‐Sensor Applications , 2007 .

[9]  John E. Anthony,et al.  Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. , 2008, Nature materials.

[10]  T. Ahn,et al.  Printed Cu source/drain electrode capped by CuO hole injection layer for organic thin film transistors , 2011 .

[11]  Terho Kololuoma,et al.  R2R gravure and inkjet printed RF resonant tag , 2011 .

[12]  H. Thomas Hahn,et al.  Intense pulsed light sintering of copper nanoink for printed electronics , 2009 .

[13]  U. Schubert,et al.  Inkjet-printed silver tracks : low temperature curing and thermal stability investigation , 2008 .

[14]  Tetsuo Urabe,et al.  An OTFT‐driven rollable OLED display , 2011 .

[15]  M. Kurihara,et al.  Organic integrated circuits using room-temperature sintered silver nanoparticles as printed electrodes , 2012 .

[16]  R. Ruoff,et al.  All-organic vapor sensor using inkjet-printed reduced graphene oxide. , 2010, Angewandte Chemie.

[17]  Gyoujin Cho,et al.  Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging , 2014, Scientific Reports.

[18]  John A. Rogers,et al.  Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination , 2003 .

[19]  Tse Nga Ng,et al.  Organic inkjet-patterned memory array based on ferroelectric field-effect transistors , 2011 .

[20]  Jooho Moon,et al.  Inkjet-printed Cu source/drain electrodes for solution-deposited thin film transistors , 2010 .

[21]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.