Interference of identical particles from entanglement to boson-sampling

Progress in the reliable preparation, coherent propagation and efficient detection of many-body states has recently brought collective quantum phenomena of many identical particles into the spotlight. This tutorial introduces the physics of many-boson and many-fermion interference required for the description of current experiments and for the understanding of novel approaches to quantum computing.The field is motivated via the two-particle case, for which the uncorrelated, classical dynamics of distinguishable particles is compared to the quantum behaviour of identical bosons and fermions. Bunching of bosons is opposed to anti-bunching of fermions, while both species constitute equivalent sources of bipartite two-level entanglement. The realms of indistinguishable and distinguishable particles are connected by a monotonic transition, on a scale defined by the coherence length of the interfering particles.As we move to larger systems, any attempt to understand many particles via the two-particle paradigm fails: in contrast to two-particle bunching and anti-bunching, the very same signatures can be exhibited by bosons and fermions, and coherent effects dominate over statistical behaviour. The simulation of many-boson interference, termed boson-sampling, entails a qualitatively superior computational complexity when compared to fermions. The problem can be tamed by an artificially designed symmetric instance, which allows a systematic understanding of coherent bosonic and fermionic signatures for arbitrarily large particle numbers, and a means to stringently assess many-particle interference. The hierarchy between bosons and fermions also characterizes multipartite entanglement generation, for which bosons again clearly outmatch fermions. Finally, the quantum-to-classical transition between many indistinguishable and many distinguishable particles features non-monotonic structures, which dismisses the single-particle coherence length as unique indicator for interference capability. While the same physical principles govern small and large systems, the deployment of the intrinsic complexity of collective many-body interference makes more particles behave differently.

[1]  Sampling generalized cat states with linear optics is probably hard , 2013, 1310.0297.

[2]  T. Ralph,et al.  Optimized generation of heralded Fock states using parametric down-conversion , 2009, 0909.4147.

[3]  Scott Aaronson,et al.  A linear-optical proof that the permanent is #P-hard , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  G. Fève,et al.  Electron quantum optics in ballistic chiral conductors , 2014, 1403.0118.

[5]  Bryan T. Gard,et al.  Quantum random walks with multiphoton interference and high-order correlation functions , 2011, 1112.3992.

[6]  Holland,et al.  The fermionic hanbury brown and twiss experiment , 1999, Science.

[7]  F. Laloë Do We Really Understand Quantum Mechanics?: Contents , 2012 .

[8]  Paul Erker,et al.  Experimentally feasible set of criteria detecting genuine multipartite entanglement in n-qubit Dicke states and in higher-dimensional systems , 2011 .

[9]  Ian McCulloch,et al.  Statistically induced phase transitions and anyons in 1D optical lattices. , 2010, Nature communications.

[10]  Stefano Pironio,et al.  Quantum non-locality based on finite-speed causal influences leads to superluminal signalling , 2011, Nature Physics.

[11]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[12]  Adam Bouland,et al.  Generation of universal linear optics by any beam splitter , 2013, 1310.6718.

[13]  Y. O. Dudin,et al.  Strongly Interacting Rydberg Excitations of a Cold Atomic Gas , 2012, Science.

[14]  Robert Keil,et al.  Perfect transfer of path-entangled photons in J x photonic lattices , 2013 .

[15]  Yoon-Ho Kim,et al.  Nonmonotonic quantum-to-classical transition in multiparticle interference , 2011, Proceedings of the National Academy of Sciences.

[16]  W. Pauli,et al.  Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1925 .

[17]  Immanuel Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[18]  M. Scully,et al.  A Beam Splitting Experiment with Correlated Photons , 1988 .

[19]  W. Pauli,et al.  Exclusion Principle And Quantum Mechanics , 1947 .

[20]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[21]  E. Huntington,et al.  Photostatistics reconstruction via loop detector signatures. , 2009, Optics express.

[22]  Aaron J. Miller,et al.  Direct observation of photon pairs at a single output port of a beam-splitter interferometer , 2003 .

[23]  P. Ribeiro,et al.  Entanglement in the symmetric sector of n qubits. , 2011, Physical review letters.

[24]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[25]  D. Christodoulides,et al.  Quantum correlations in two-particle Anderson localization. , 2010, Physical review letters.

[26]  J. Siewert,et al.  Entanglement of three-qubit Greenberger-Horne-Zeilinger-symmetric states. , 2012, Physical review letters.

[27]  Bose Plancks Gesetz und Lichtquantenhypothese , 1924 .

[28]  L. Vaidman,et al.  Methods for Reliable Teleportation , 1998, quant-ph/9808040.

[29]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[30]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[31]  Fernando de Melo,et al.  Entanglement of identical particles and the detection process , 2009, 0902.1684.

[32]  A. Politi,et al.  Observing fermionic statistics with photons in arbitrary processes , 2013, Scientific Reports.

[33]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[34]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[35]  Wojciech Tadej,et al.  A Concise Guide to Complex Hadamard Matrices , 2006, Open Syst. Inf. Dyn..

[36]  Guang-Can Guo,et al.  Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. , 2011, Nature communications.

[37]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[38]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[39]  Yoon-Ho Kim,et al.  Four-photon indistinguishability transition , 2010, 1009.4998.

[40]  Mario Rasetti,et al.  TOWARDS A QUANTUM ALGORITHM FOR THE PERMANENT , 2007 .

[41]  Lixiang Chen,et al.  Hybrid entanglement swapping of photons: Creating the orbital angular momentum Bell states and Greenberger-Horne-Zeilinger states , 2011 .

[42]  Hyang-Tag Lim,et al.  Experimental realization of a delayed-choice quantum walk , 2013, Nature Communications.

[43]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[44]  Marcus Huber,et al.  Detection of high-dimensional genuine multipartite entanglement of mixed states. , 2009, Physical review letters.

[45]  Christoph Simon,et al.  Entangling independent photons by time measurement , 2007, 0704.0758.

[46]  J. Fink,et al.  Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies , 2013, Nature Physics.

[47]  Peter C Humphreys,et al.  Multiphoton quantum interference in a multiport integrated photonic device , 2012, Nature Communications.

[48]  Andreas Buchleitner,et al.  Stringent and efficient assessment of boson-sampling devices. , 2013, Physical review letters.

[49]  D. Hume,et al.  Accurate atom counting in mesoscopic ensembles. , 2013, Physical review letters.

[50]  Lipo Wang,et al.  Observation of Four-Photon Interference with a Beam Splitter by Pulsed Parametric Down-Conversion , 1999 .

[51]  Jonathan P. Dowling,et al.  Spontaneous parametric down-conversion photon sources are scalable in the asymptotic limit for boson sampling , 2013, 1307.8238.

[52]  P. Anderson More is different. , 1972, Science.

[53]  Tomography and state reconstruction with superconducting single-photon detectors , 2012, 1206.5145.

[54]  Andrew G. White,et al.  Direct characterization of linear-optical networks. , 2012, Optics express.

[55]  Yvonne Y Gao,et al.  SU(3) quantum interferometry with single-photon input pulses. , 2012, Physical review letters.

[56]  A. Crespi,et al.  Anderson localization of entangled photons in an integrated quantum walk , 2013, Nature Photonics.

[57]  M Paternostro,et al.  Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. , 2009, Physical review letters.

[58]  L. Lamata,et al.  Operational families of entanglement classes for symmetric N-qubit States. , 2009, Physical review letters.

[59]  A Laing,et al.  Boson sampling from a Gaussian state. , 2014, Physical review letters.

[60]  Andreas Renz,et al.  Observation of Hanbury Brown–Twiss anticorrelations for free electrons , 2002, Nature.

[61]  F. Laloë,et al.  Quantum Properties of a Single Beam Splitter , 2010, 1004.1731.

[62]  Hanbury Brown Twiss Effect for Ultracold Quantum Gases , 2005, Science.

[63]  Otfried Gühne,et al.  Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. , 2007, Physical review letters.

[64]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[65]  A. Politi,et al.  Multimode quantum interference of photons in multiport integrated devices , 2010, Nature communications.

[66]  Andreas Muller,et al.  Interference of single photons from two separate semiconductor quantum dots , 2011, OPTO.

[67]  Yoon-Ho Kim,et al.  Two-photon interference without bunching two photons , 2003, quant-ph/0304030.

[68]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[69]  Teich,et al.  Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. , 1989, Physical review. A, General physics.

[70]  A. Tünnermann,et al.  Direct observation of Landau-Zener tunneling in a curved optical waveguide coupler , 2009 .

[71]  A. Buchleitner,et al.  Many-body entanglement: Permutations and equivalence classes , 2011, 1109.6337.

[72]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[73]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[74]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[75]  A. Aiello,et al.  Identical classical particles: half fermions and half bosons , 2013, 1302.4306.

[76]  Nicolò Spagnolo,et al.  Quantum interferometry with three-dimensional geometry , 2012, Scientific Reports.

[77]  Timothy C. Ralph,et al.  Boson sampling on a chip , 2013, Nature Photonics.

[78]  Peter P Rohde,et al.  Scalable boson sampling with time-bin encoding using a loop-based architecture. , 2014, Physical review letters.

[79]  Robert W. Boyd,et al.  Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits. , 2005 .

[80]  Luca Marinatto,et al.  Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .

[81]  Igor Jex,et al.  Increasing the Dimensionality of Quantum Walks Using Multiple Walkers , 2012, 1205.1850.

[82]  Guoquan Zhang,et al.  Two-photon superbunching of thermal light via multiple two-photon path interference , 2011, 1108.3612.

[83]  Moochan B. Kim,et al.  Inefficiency of classically simulating linear optical quantum computing with Fock-state inputs , 2013, 1304.4206.

[84]  M. Kus,et al.  Measures and dynamics of entangled states , 2005, quant-ph/0505162.

[85]  L. Cooper,et al.  Microscopic theory of superconductivity , 1957 .

[86]  Anthony Leverrier,et al.  Analysis of circuit imperfections in BosonSampling , 2013, Quantum Inf. Comput..

[87]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[88]  Z. Ou,et al.  Multi-photon quantum interference , 2007 .

[89]  Nicolò Spagnolo,et al.  Three-photon bosonic coalescence in an integrated tritter , 2012, Nature Communications.

[90]  M. Koashi,et al.  Measuring qutrit-qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon. , 2009, Physical review letters.

[91]  Jian-Wei Pan,et al.  Experimental multiparticle entanglement swapping for quantum networking. , 2009, Physical review letters.

[92]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[93]  S. J. van Enk,et al.  Single-particle entanglement , 2005, quant-ph/0507189.

[94]  V. Shchesnovich Conditions for an experimental Boson-sampling computer to disprove the Extended Church-Turing thesis , 2014, 1403.4459.

[95]  J. Eisert,et al.  Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.

[96]  E. B. Stouffer On the independence of principal minors of determinants , 1924 .

[97]  Yoon-Ho Kim,et al.  Preparation and characterization of arbitrary states of four-dimensional qudits based on biphotons , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[98]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[99]  Andreas Buchleitner,et al.  Counting statistics of many-particle quantum walks , 2010, 1009.5241.

[100]  D. Kaszlikowski,et al.  Identifying quantumness via addition-then-subtraction operation , 2012, 1212.5338.

[101]  E Ikonen,et al.  Quantum interference of tunably indistinguishable photons from remote organic molecules , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[102]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[103]  Ou,et al.  Violation of Bell's inequality and classical probability in a two-photon correlation experiment. , 1988, Physical review letters.

[104]  P. A. Macmahon,et al.  A Certain Class of Generating Functions in the Theory of Numbers. [Abstract] , 1893 .

[105]  Anton Zeilinger,et al.  Similarities and Differences Between Two-Particle and Three-Particle Interference , 2000 .

[106]  J. Dowling Quantum optical metrology – the lowdown on high-N00N states , 2008, 0904.0163.

[107]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[108]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[109]  James C. Gates,et al.  High quantum efficiency photon-number-resolving detector for photonic on-chip information processing , 2013, CLEO: 2013.

[110]  Scott Aaronson,et al.  Quantum Computing since Democritus , 2013 .

[111]  G. Marshall,et al.  Non-classical interference in integrated 3D multiports. , 2012, Optics express.

[112]  John Calsamiglia Generalized measurements by linear elements , 2002 .

[113]  GianCarlo Ghirardi,et al.  General criterion for the entanglement of two indistinguishable particles (10 pages) , 2004 .

[114]  Piotr Migdal,et al.  Multiphoton states related via linear optics , 2014, 1403.3069.

[115]  Ronald L. Graham,et al.  On the permanent of Schur's matrix , 1976, Journal of the Australian Mathematical Society.

[116]  B. Sanders,et al.  Coincidence landscapes for three-channel linear optical networks , 2014, 1402.2391.

[117]  A. Wallraff,et al.  Signatures of Hong–Ou–Mandel interference at microwave frequencies , 2013, 1304.6068.

[118]  Yoon-Ho Kim,et al.  Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser. , 2013, Optics express.

[119]  Florian Mintert,et al.  Hierarchies of multipartite entanglement. , 2013, Physical review letters.

[120]  Lipo Wang,et al.  PHOTON BUNCHING AND MULTIPHOTON INTERFERENCE IN PARAMETRIC DOWN-CONVERSION , 1999 .

[121]  Marek Zukowski,et al.  Experimental test of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state. , 2009, Physical review letters.

[122]  Valery Shchesnovich,et al.  Sufficient condition for the mode mismatch of single photons for scalability of the boson-sampling computer , 2013, 1311.6796.

[123]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[124]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[125]  A new analysis of multi-photon interference , 2009 .

[126]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[127]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[128]  A. Buchleitner,et al.  Essential entanglement for atomic and molecular physics , 2010, 1012.3940.

[129]  V. Shchesnovich,et al.  Asymptotic evaluation of bosonic probability amplitudes in linear unitary networks in the case of large number of bosons , 2013, 1304.6675.

[130]  Comparison of the Hanbury Brown–Twiss effect for bosons and fermions , 2006, Nature.

[131]  Barry C. Sanders,et al.  Generalized Multiphoton Quantum Interference , 2014, 1403.3433.

[132]  Bin Liu,et al.  Local unitary classification of arbitrary dimensional multipartite pure states. , 2011, Physical review letters.

[133]  Shih,et al.  New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. , 1988, Physical review letters.

[134]  M. Horodecki,et al.  Concurrence in arbitrary dimensions , 2001, quant-ph/0107147.

[135]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[136]  Andreas Tünnermann,et al.  Photon correlations in two-dimensional waveguide arrays and their classical estimate , 2010 .

[137]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[138]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[139]  D. Christodoulides,et al.  Generating photon-encodedWstates in multiport waveguide-array systems , 2013 .

[140]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[141]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[142]  Sergei P. Kulik,et al.  Erratum: Preparation and characterization of arbitrary states of four-dimensional qudits based on biphotons [Phys. Rev. A 78, 042321 (2008)] , 2009 .

[143]  P. Mataloni,et al.  Efficient experimental validation of photonic boson sampling against the uniform distribution , 2013, 1311.1622.

[144]  Roberto Morandotti,et al.  Quantum and classical correlations in waveguide lattices. , 2008, Physical review letters.

[145]  J. O'Brien,et al.  On the experimental verification of quantum complexity in linear optics , 2013, Nature Photonics.

[146]  Nicolò Spagnolo,et al.  General rules for bosonic bunching in multimode interferometers. , 2013, Physical review letters.

[147]  Bahaa E. A. Saleh,et al.  Anderson localization and colocalization of spatially entangled photons , 2012 .

[148]  F. Zwicky,et al.  Remarks on Super-Novae and Cosmic Rays , 1934 .

[149]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[150]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[151]  A. Buchleitner,et al.  Limits to multipartite entanglement generation with bosons and fermions , 2012, 1210.2920.

[152]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[153]  L. Duan,et al.  Scalable implementation of boson sampling with trapped ions. , 2013, Physical review letters.

[154]  M. Oberthaler,et al.  Single-particle tunneling in strongly driven double-well potentials. , 2008, Physical review letters.

[155]  B. Kraus,et al.  Local unitary equivalence of multipartite pure states. , 2009, Physical review letters.

[156]  William J. Munro,et al.  Will boson-sampling ever disprove the Extended Church-Turing thesis? , 2014 .

[157]  M. Segev,et al.  Anderson localization of light , 2009, Nature Photonics.

[158]  Markus Tiersch,et al.  Zero-transmission law for multiport beam splitters. , 2010, Physical review letters.

[159]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[160]  Tsubasa Ichikawa,et al.  Entanglement of indistinguishable particles , 2010, 1009.4147.

[161]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[162]  Timothy C. Ralph,et al.  Error tolerance of the boson-sampling model for linear optics quantum computing , 2011, 1111.2426.

[163]  Thomas Muir Ll.D. LXII. On the expressibility of a determinant in terms of its coaxial minors , 1894 .

[164]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[165]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[166]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[167]  A. Schreiber,et al.  A 2D Quantum Walk Simulation of Two-Particle Dynamics , 2012, Science.

[168]  I. Shklovsky ON THE NATURE OF THE SOURCE OF X-RAY EMISSION OF SCO XR-1. , 1967 .

[169]  G. Vallone,et al.  Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.

[170]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[171]  Anton Zeilinger,et al.  General properties of lossless beam splitters in interferometry , 1981 .

[172]  Demonstration of temporal distinguishability in a four-photon state and a six-photon state. , 2006, Physical review letters.

[173]  A. Sergienko Quantum optics: Beyond single-photon counting , 2008 .

[174]  J. Dalibard,et al.  Interference of an array of independent Bose-Einstein condensates. , 2004, Physical review letters.

[175]  Stefan Nolte,et al.  Coherent quantum transport in photonic lattices , 2012, 1207.6080.

[176]  Gregg Jaeger,et al.  Do We Really Understand Quantum Mechanics? , 2012 .

[177]  Dagmar Bruss,et al.  Experimentally implementable criteria revealing substructures of genuine multipartite entanglement , 2011 .

[178]  G. Fève,et al.  Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources , 2013, Science.

[179]  F. Sciarrino,et al.  Hong-Ou-Mandel interferometer with one and two photon pairs , 2008 .

[180]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[181]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[182]  Yoon-Ho Kim,et al.  Observation of detection-dependent multi-photon coherence times , 2013, Nature Communications.

[183]  S. Scheel,et al.  Permanents in linear optical networks , 2004, quant-ph/0406127.

[184]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[185]  I. Bloch,et al.  Counting atoms using interaction blockade in an optical superlattice. , 2008, Physical review letters.

[186]  A. Politi,et al.  Coherent time evolution and boundary conditions of two-photon quantum walks in waveguide arrays , 2012, 1209.1599.

[187]  Bing He,et al.  Implementation of quantum operations on single-photon qudits , 2007 .

[188]  Evaluable multipartite entanglement measures: Multipartite concurrences as entanglement monotones , 2006, quant-ph/0607084.

[189]  Nicolai Friis,et al.  Fermionic mode entanglement in quantum information , 2012, 1211.7217.

[190]  Jens Eisert,et al.  Boson-Sampling in the light of sample complexity , 2013, ArXiv.

[191]  M. Nock Single photons for quantum information processing , 2006 .

[192]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[193]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[194]  Scott Aaronson,et al.  Bosonsampling is far from uniform , 2013, Quantum Inf. Comput..

[195]  Adam Bouland,et al.  Any Beamsplitter Generates Universal Quantum Linear Optics , 2013, Electron. Colloquium Comput. Complex..

[196]  Géza Tóth,et al.  Experimental entanglement of a six-photon symmetric Dicke state. , 2009, Physical review letters.

[197]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[198]  William J. Munro,et al.  Evidence for the conjecture that sampling generalized cat states with linear optics is hard , 2015 .

[199]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[200]  Markus Tiersch,et al.  Many-particle interference beyond many-boson and many-fermion statistics , 2012, 1204.5588.

[201]  Hong,et al.  Theory of parametric frequency down conversion of light. , 1985, Physical review. A, General physics.

[202]  A. P. Vinogradov,et al.  PT-symmetry in optics , 2014 .

[203]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[204]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[205]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[206]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[207]  Yuan Liang Lim,et al.  Generalized Hong–Ou–Mandel experiments with bosons and fermions , 2005, quant-ph/0505034.