When Hashtags Meet Recommendation in e-learning Systems

Knowledge, education and learning are major concerns in today’s society. The technologies for human learning aim to promote, stimulate, support and validate the learning process. Our approach explores the opportunities raised by mixing the Social Web and the Semantic Web technologies for e-learning. More precisely, we work on enriching learner’s profiles from their activities on the social Web. We propose a methodology for exploiting hashtags contained in users’ writings for the automatic enrichment of learner’s profiles. This paper aims at giving an insight on the processing required on hashtags before being source of knowledge on the user interests. For this purpose we introduce our approach for the automatic structuration of hashtags definitions into synonym rings. We present the output as a so-called folksionary, i.e. a single integrated dictionary built from everybody’s definitions. Semantized hashtags are thus used to feed the learner’s profile and particularly the focus field.

[1]  Ted Pedersen,et al.  An Adapted Lesk Algorithm for Word Sense Disambiguation Using WordNet , 2002, CICLing.

[2]  Hahn-Ming Lee,et al.  Personalized e-learning system using Item Response Theory , 2005, Comput. Educ..

[3]  Kathleen Dahlgren,et al.  Naive semantics for natural language understanding , 1988 .

[4]  Jacques van Helden,et al.  Evaluation of clustering algorithms for protein-protein interaction networks , 2006, BMC Bioinformatics.

[5]  Ali Selamat,et al.  Retracted: E-Learning Recommender Systems Based on Goal-Based Hybrid Filtering , 2014, Int. J. Distributed Sens. Networks.

[6]  Steven Lawrence Small,et al.  Word expert parsing: a theory of distributed word-based natural language understanding , 1980 .

[7]  Julien Subercaze,et al.  A hashtags dictionary from crowdsourced definitions , 2014, 2014 IEEE 30th International Conference on Data Engineering Workshops.

[8]  David Yarowsky,et al.  Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.

[9]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[10]  Víctor Hugo Menéndez-Domínguez,et al.  Evaluation and selection of group recommendation strategies for collaborative searching of learning objects , 2015, Int. J. Hum. Comput. Stud..

[11]  Michael E. Lesk,et al.  Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone , 1986, SIGDOC '86.

[12]  Ruben Lara,et al.  A Semantic Web Services Framework for Distributed E-Learning Environments , .

[13]  Omar Nouali,et al.  Recommandation personnalisée des ressources dans une communauté de pratique de e-learning. Une approche à base de filtrage hybride , 2013, INFORSID.

[14]  M. Bruynooghe,et al.  Classification ascendante hiérarchique des grands ensembles de données : un algorithme rapide fondé sur la construction des voisinages réductibles , 1978 .

[15]  Mohamed Jemni,et al.  Automatic Recommendations for E-Learning Personalization Based on Web Usage Mining Techniques and Information Retrieval , 2008, 2008 Eighth IEEE International Conference on Advanced Learning Technologies.

[16]  Zoran Budimac,et al.  E-Learning personalization based on hybrid recommendation strategy and learning style identification , 2011, Comput. Educ..

[17]  Florence Sèdes,et al.  Modélisation basée sur ontologies pour développer des recommandations personnalisées dans les systèmes hypermédia adaptatives , 2010, INFORSID.

[18]  Nancy Ide,et al.  Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art , 1998, Comput. Linguistics.

[19]  David Yarowsky,et al.  A method for disambiguating word senses in a large corpus , 1992, Comput. Humanit..