Fuzzy logic and neural network applications to fault diagnosis

Abstract This contribution gives a survey on the state of the art in artificial intelligence applications to model-based diagnosis for dynamic processes. Emphasis is placed on residual generation and residual evaluation employing fuzzy logic. Particularly for residual generation, a novel observer concept, the so-called knowledge observer, is introduced. An artificial neural network approach for residual generation and evaluation is outlined as well.

[1]  David M. Himmelblau Use of Artificial Neural Networks to Monitor Faults and for Troubleshooting in the Process Industries , 1992 .

[2]  Janos Gertler,et al.  An evidential reasoning extension to quantitative model-based failure diagnosis , 1992, IEEE Trans. Syst. Man Cybern..

[3]  Benjamin Kuipers,et al.  Model-Based Monitoring of Dynamic Systems , 1989, IJCAI.

[4]  Janos J. Gertler,et al.  Analytical Redundancy Methods in Fault Detection and Isolation , 1991 .

[5]  Benjamin Kuipers,et al.  Qualitative Simulation as Causal Explanation , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Henk B. Verbruggen,et al.  A Real-Time Fuzzy, Deep-knowledge Based Fault-diagnosis System for a CSTR , 1992 .

[7]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[8]  Heikki N. Koivo,et al.  APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN PROCESS FAULT DIAGNOSIS , 1991 .

[9]  Benjamin Kuipers,et al.  Qualitative-numeric simulation with Q3 , 1993 .

[10]  R. Isermann Wissensbasierte Fehlerdiagnose technischer Prozesse / , 1988 .

[11]  David M. Himmelblau,et al.  FAULT DIAGNOSIS IN COMPLEX CHEMICAL PLANTS USING ARTIFICIAL NEURAL NETWORKS , 1991 .

[12]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems: theory and application , 1989 .

[13]  P.M. Frank,et al.  Residual evaluation for fault detection and isolation with RCE neural networks , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[14]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[15]  D. Sauter,et al.  Fault diagnosis in systems using fuzzy logic , 1994, 1994 Proceedings of IEEE International Conference on Control and Applications.

[16]  KuipersBenjamin Commonsense reasoning about causality: deriving behavior from structure , 1984 .

[17]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[18]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artificial Intelligence.

[19]  Mike J. Chantler,et al.  Qualitative model-based diagnosis of dynamic systems , 1994 .

[20]  Marios M. Polycarpou,et al.  Learning methodology for failure detection and accommodation , 1995 .

[21]  中園 薫 A Qualitative Physics Based on Confluences , 1986 .

[22]  Boi Faltings,et al.  Recent advances in qualitative physics , 1993 .

[23]  P. J. Dalianis,et al.  Fault diagnosis in complex systems using artificial neural networks , 1994, 1994 Proceedings of IEEE International Conference on Control and Applications.

[24]  Ethan A. Scarl,et al.  Diagnosis and Sensor Validation through Knowledge of Structure and Function , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  David M. Himmelblau,et al.  FAULT CLASSIFICATION WITH THE AID OF ARTIFICIAL NEURAL NETWORKS , 1992 .

[26]  Hwee Tou Ng,et al.  Model-based, multiple fault diagnosis of time-varying, continuous physical devices , 1990, Sixth Conference on Artificial Intelligence for Applications.

[27]  Michael R. Genesereth,et al.  The Use of Design Descriptions in Automated Diagnosis , 1984, Artif. Intell..

[28]  Rolf Isermann,et al.  Design of a fuzzy-logic based diagnostic model for technical processes , 1993 .

[29]  Shaw Jen Chang,et al.  Failure propagation trees for diagnosis in manufacturing systems , 1991, IEEE Trans. Syst. Man Cybern..

[30]  Kenneth D. Forbus Interpreting Measurements of Physical Systems , 1986, AAAI.

[31]  Robert Milne,et al.  Strategies for Diagnosis , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  F. E. Finch,et al.  Qualitative modeling and fault diagnosis of dynamic processes by MIDAS , 1992 .

[33]  P.M. Frank,et al.  Fault detection and isolation in technical processes with neural networks , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[34]  Heikki N. Koivo,et al.  Application of artificial neural networks in process fault diagnosis , 1991, Autom..

[35]  Benjamin Kuipers,et al.  Qualitative Simulation , 1986, Artificial Intelligence.

[36]  Benjamin Kuipers,et al.  Commonsense Reasoning about Causality: Deriving Behavior from Structure , 1984, Artif. Intell..

[37]  Ron J. Patton Robustness issues in fault-tolerant control , 1993 .

[38]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[39]  Paul M. Frank,et al.  Process supervision with the aid of fuzzy logic , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[40]  Rolf Isermann FAULT DIAGNOSIS OF MACHINES VIA PARAMETER ESTIMATION AND KNOWLEDGE PROCESSING , 1992 .

[41]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[42]  Rolf Isermann,et al.  Fault diagnosis of machines via parameter estimation and knowledge processing - Tutorial paper , 1991, Autom..

[43]  Randall Davis,et al.  Diagnostic Reasoning Based on Structure and Behavior , 1984, Artif. Intell..

[44]  Qiang Shen,et al.  Fuzzy qualitative simulation , 1993, IEEE Trans. Syst. Man Cybern..

[45]  Qiang Shen,et al.  Prioritising Behaviours in Qualitative Simulation , 1993, IJCAI.