An overview of aluminum/sulfur battery technology

Recently, the authors introduced a new battery utilizing a sulfur cathode and an aluminum anode; the aluminum-sulfur cell, E/sub cell/(theoretical)=1.8 V. The Faradaic capacity of the Al/S battery (based on potassium salts) is 505 Ah/kg, and the theoretical specific energy is 1.8 Volt/spl times/505 Ah/kg=910 Wh/kg. The principal advantages of the system include its ability to function at and near room temperature, and the very high energy capacity of the anodic and cathodic materials. In this paper, technological developments in the low, medium and high power density domains of the aluminum/sulfur battery are discussed.<<ETX>>

[1]  W. Boehnstedt The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions , 1980 .

[2]  S. Licht,et al.  The High Aqueous Solubility of K 2 S and Its Effect on Bulk and Photoelectrochemical Characteristics of Cd ( SeTe ) / S x = Cells II . Variation of Sulfur/Sulfide Ratio , 1986 .

[3]  G. Hodes,et al.  Numerical analysis of aqueous polysulfide solutions and its application to cadmium chalcogenide/polysulfide photoelectrochemical solar cells , 1986 .

[4]  Stuart Licht,et al.  An Energetic Medium for Electrochemical Storage Utilizing the High Aqueous Solubility of Potassium Polysulfide , 1987 .

[5]  Reshef Tenne,et al.  A light-variation insensitive high efficiency solar cell , 1987, Nature.

[6]  S. Licht A description of energy conversion in photoelectrochemical solar cells , 1987, Nature.

[7]  Digby D. Macdonald,et al.  Evaluation of Alloy Anodes for Aluminum‐Air Batteries II . Delineation of Anodic and Cathodic Partial Reactions , 1988 .

[8]  M. Urquidi-Macdonald,et al.  Evaluation of alloy anodes for aluminum-air batteries. III: Mechanisms of activation, passivation, and hydrogen evolution , 1988 .

[9]  D. Macdonald,et al.  Development of anodes for aluminium/air batteries — solution phase inhibition of corrosion , 1989 .

[10]  S. Licht,et al.  Differential densometric analysis of equilibria in highly concentrated media : determination of the aqueous second acid dissociation constant of H2S , 1990 .

[11]  S. Licht,et al.  Conductometric analysis of the second acid dissociation constant of H2S in highly concentrated aqueous media , 1991 .

[12]  T. Sakai,et al.  Electrochemical Impedance Spectra and Deterioration Mechanism of Metal Hydride Electrodes , 1992 .

[13]  M. Ippommatsu,et al.  High‐Power‐Density‐Solid‐Oxide‐Electrolyte Fuel Cells , 1992 .

[14]  C. Marsh,et al.  A Novel Aqueous Aluminum/Ferricyanide Battery , 1992 .

[15]  J. Fuller,et al.  Alkali Metal Reduction Potentials Measured in Chloroaluminate Ambient‐Temperature Molten Salts , 1992 .

[16]  W. Behl,et al.  The Rechargeable Ambient Temperature Rocking‐Chair Lithium Cell Employing a Solution of Lithium Hexafluoroarsenate in Acetonitrile as the Electrolyte , 1993 .

[17]  S. Licht,et al.  Novel Aqueous Aluminum/Sulfur Batteries , 1993 .

[18]  R. Knödler,et al.  Corrosion of Metallic Materials in Sodium Polysulfide , 1993 .

[19]  S. Licht,et al.  A Solid Sulfur Cathode for Aqueous Batteries , 1993, Science.

[20]  C. Marsh,et al.  A Novel Aqueous Dual‐Channel Aluminum‐Hydrogen Peroxide Battery , 1994 .

[21]  S. Licht,et al.  Activity and spectroscopic analysis of concentrated solutions of potassium sulfide , 1994 .