Distribution of Different Scrippsiella acuminata (Dinophyta) Cyst Morphotypes in Surface Sediments of the Black Sea: A Basin Scale Approach

Plankton cyst abundance and distribution is controlled by multiple factors. The stress linked to the fluctuations and variations of the environmental conditions in the water column is a major vector of encystment and intraspecific variability is an important adaptive strategy. The present study aims to disclose a link between the spatial distribution and abundance of different cyst morphotypes of Scrippsiella acuminata complex in surface sediments collected in the Black Sea at 34 sites and selected environmental variables. With this purpose, a basin scale data set was analyzed for patterns of intraspecific spatial heterogeneity. Redundancy analysis (RDA) was implemented to identify explanatory environmental variables associated with the cyst morphotypes abundance. Environmental multiyear data were used to ensure better approximation of a model that links environmental gradients with cyst abundance. Our results show that all S. acuminata cysts morphotypes are significantly correlated to one or a combination of the environmental variables, i.e., salinity, temperature and nutrients (nitrates and phosphates). The geographical distribution of Scrippsiella blooms in the Black Sea indicates that the interplay between the planktonic and benthic habitat of the dinoflagellate gives to S. acuminata the advantage to dominate in the plankton communities.

[1]  F. Rubino,et al.  Habitat Shift for Plankton: The Living Side of Benthic-Pelagic Coupling in the Mar Piccolo of Taranto (Southern Italy, Ionian Sea) , 2021, Water.

[2]  P. Oliveira,et al.  Environmental Factors Affecting Spatial Dinoflagellate Cyst Distribution in Surface Sediments Off Aveiro-Figueira da Foz (Atlantic Iberian Margin) , 2021, Frontiers in Marine Science.

[3]  A. Anesio,et al.  Dinoflagellate cyst assemblages as indicators of environmental conditions and shipping activities in coastal areas of the Black and Caspian Seas , 2020 .

[4]  S. Moncheva,et al.  Comparative analysis of morphological and molecular approaches integrated into the study of the dinoflagellate biodiversity within the recently deposited Black Sea sediments – benefits and drawbacks , 2020, Biodiversity data journal.

[5]  P. Mudie,et al.  Palynomorphs in surface sediments of the North-Western Black Sea as indicators of environmental conditions , 2020, Quaternary International.

[6]  F. Ricci,et al.  Structure and environmental drivers of phytoplanktonic resting stage assemblages in the central Mediterranean Sea , 2020 .

[7]  Young-Ok Kim,et al.  A biological tool for indicating hypoxia in coastal waters: calcareous walled-type to naked-type cysts of Scrippsiella trochoidea (Dinophyceae) , 2019, Plankton and Benthos Research.

[8]  F. Rubino,et al.  Resting Cysts from Coastal Marine Plankton , 2019, Oceanography and Marine Biology.

[9]  F. Sangiorgi,et al.  Where should we draw the lines between dinocyst “species”? Morphological continua in Black Sea dinocysts , 2019, Journal of Micropalaeontology.

[10]  M. Gottschling,et al.  Towards global distribution maps of unicellular organisms such as calcareous dinophytes based on DNA sequence information , 2019, Marine Biodiversity.

[11]  Weol-Ae Lim,et al.  Seasonal production of dinoflagellate cysts in relation to environmental characteristics in Jinhae-Masan Bay, Korea: One-year sediment trap observation , 2018, Estuarine, Coastal and Shelf Science.

[12]  L. Ferraro,et al.  A multidisciplinary approach to study confined marine basins: the holobenthic and merobenthic assemblages in the Mar Piccolo of Taranto (Ionian Sea, Mediterranean) , 2017, Marine Biodiversity.

[13]  M. Cadotte,et al.  Should Environmental Filtering be Abandoned? , 2017, Trends in ecology & evolution.

[14]  F. Marret,et al.  Atlas of modern dinoflagellate cyst distributions in the Black Sea Corridor: from Aegean to Aral Seas, including Marmara, Black, Azov and Caspian Seas , 2017 .

[15]  A. Kuijpers,et al.  Size differences of Arctic marine protists between two climate periods—using the paleoecological record to assess the importance of within‐species trait variation , 2016, Ecology and evolution.

[16]  T. Cibic,et al.  Microbenthic community structure and trophic status of sediments in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea) , 2016, Environmental Science and Pollution Research.

[17]  K. Soetaert,et al.  Integrating sediment biogeochemistry into 3D oceanic models: a study of benthic-pelagic coupling in the Black Sea , 2016 .

[18]  M. Gottschling,et al.  Taxonomic clarification of the dinophyte Peridinium acuminatum Ehrenb., ≡ Scrippsiella acuminata , comb . nov . (Thoracosphaeraceae, Peridiniales) , 2015 .

[19]  M. Gottschling,et al.  Taxonomic clarification of the dinophyte Rhabdosphaera erinaceus Kamptner, ≡ Scrippsiella erinaceus comb. nov. (Thoracosphaeraceae, Peridiniales) , 2014 .

[20]  S. Jung,et al.  Morphological features and viability of Scrippsiella trochoidea cysts isolated from fecal pellets of the polychaete Capitella sp. , 2014 .

[21]  S. Morton,et al.  Sexual life stages and temperature dependent morphological changes allow cryptic occurrence of the Florida red tide dinoflagellate Karenia brevis , 2013 .

[22]  S. Jung,et al.  Effect of pH on the morphology and viability of Scrippsiella trochoidea cysts in the hypoxic zone of a eutrophied area , 2013 .

[23]  M. Ellegaard,et al.  Hundred Years of Environmental Change and Phytoplankton Ecophysiological Variability Archived in Coastal Sediments , 2013, PloS one.

[24]  B. Dale,et al.  Process length variation of the cyst of the dinoflagellate Protoceratium reticulatum in the North Pacific and Baltic‐Skagerrak region: calibration as an annual density proxy and first evidence of pseudo‐cryptic speciation , 2012 .

[25]  A. Vernal,et al.  Process length variation of the cyst of the dinoflagellate Protoceratium reticulatum in the North Pacific: a new density proxy and first evidence of pseudo-cryptic speciation , 2012 .

[26]  A. Aksu,et al.  Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate , 2012 .

[27]  X. D. D. Madron,et al.  Carbon flux to the deep in three open sites of the Southern European Seas (SES) , 2012 .

[28]  M. Ellegaard,et al.  Buried alive – germination of up to a century-old marine protist resting stages , 2011 .

[29]  M. Gottschling,et al.  Catch me if you can: the taxonomic identity of Scrippsiella trochoidea (F.Stein) A.R.Loebl. (Thoracosphaeraceae, Dinophyceae) , 2011 .

[30]  E. Granéli,et al.  Influence of altered light conditions and grazers on Scrippsiella trochoidea (Dinophyceae) cyst formation , 2011 .

[31]  B. Dale,et al.  Process length variation in cysts of the dinoflagellate Protoceratium reticulatum, from surface sediments of the Baltic–Kattegat–Skagerrak estuarine system: a regional salinity proxy , 2011 .

[32]  K. Soetaert,et al.  Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea : a biogeochemical model of the whole water column coupling the oxic and anoxic parts , 2010 .

[33]  A. Kremp,et al.  Species specific encystment patterns in three Baltic cold‐water dinoflagellates: The role of multiple cues in resting cyst formation , 2009 .

[34]  J. Vlassenbroeck,et al.  Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sedi , 2009 .

[35]  A. Amorim,et al.  Environmental drivers of temporal succession in recent dinoflagellate cyst assemblages from a coastal site in the North-East Atlantic (Lisbon Bay, Portugal) , 2008 .

[36]  R. Zeng,et al.  PHYLOGENETIC POSITION AND MORPHOLOGY OF THECAE AND CYSTS OF SCRIPPSIELLA (DINOPHYCEAE) SPECIES IN THE EAST CHINA SEA 1 , 2008, Journal of phycology.

[37]  C. Raick,et al.  Numerical modeling of the central Black Sea ecosystem functioning during the eutrophication phase , 2008 .

[38]  H. Willems,et al.  Calcareous dinoflagellate cyst distributions in surface sediments from upwelling areas off NW Africa, and their relationships with environmental parameters of the upper water column , 2007 .

[39]  K. Zonneveld,et al.  Effects of temperature, light and salinity on cyst production and morphology of Tuberculodinium vancampoae (the resting cyst of Pyrophacus steinii) , 2007 .

[40]  Y. Qi,et al.  Cyst formation: an important mechanism for the termination of Scrippsiella trochoidea (Dinophyceae) bloom , 2007 .

[41]  A. Feyzioğlu,et al.  Red Tide Observations along the Eastern Black Sea Coast of Turkey , 2006 .

[42]  J. Padisák,et al.  The Effects of Temperature, Nitrogen, and Phosphorus on the Encystment of Peridinium cinctum, Stein (Dinophyta) , 2006, Hydrobiologia.

[43]  M. Gottschling,et al.  A molecular phylogeny of Scrippsiella sensu lato (Calciodinellaceae, Dinophyta) with interpretations on morphology and distribution , 2005 .

[44]  Songhui Lu,et al.  Dinoflagellate cyst records in recent sediments from Daya Bay, South China Sea , 2004 .

[45]  I. Bravo,et al.  Relationship between vegetative cells and cyst production during Alexandrium minutum bloom in Arenys de Mar harbour (NW Mediterranean) , 2004 .

[46]  G. Procaccini,et al.  Intraspecific diversity in Scrippsiella trochoidea (Dinopbyceae): evidence for cryptic species , 2003 .

[47]  Muhammet Türkoğlu,et al.  Phytoplankton Species' Succession and Nutrients in the Southern Black Sea (Bay of Sinop) , 2002 .

[48]  D. Anderson,et al.  HIGH ENCYSTMENT SUCCESS OF THE DINOFLAGELLATE SCRIPPSIELLA CF. LACHRYMOSA IN CULTURE EXPERIMENTS 1 , 2002 .

[49]  A. Kremp Effects of cyst resuspension on germination and seeding of two bloom-forming dinoflagellates in the Baltic Sea , 2001 .

[50]  J. Pross Paleo-oxygenation in Tertiary epeiric seas: evidence from dinoflagellate cysts , 2001 .

[51]  M. Montresor,et al.  Temperature and daylength regulate encystment in calcareous cyst-forming dinoflagellates , 2001 .

[52]  Young-Ok Kim,et al.  Seasonal relationships between cyst germination and vegetative population of Scrippsiella trochoidea (Dinophyceae) , 2000 .

[53]  R. Devillers,et al.  Distribution of dinoflagellate cysts in surface sediments of the northern North Atlantic in relation to nutrient content and productivity in surface waters , 2000 .

[54]  M. Ellegaard,et al.  Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years in the Limfjord, Denmark. , 2000, Review of palaeobotany and palynology.

[55]  D. Anderson,et al.  Morphological development of resting cysts in cultures of the marine dinoflagellate Lingulodinium polyedrum (= L. Machaerophorum) , 1995 .

[56]  A. Zingone,et al.  Calcareous dinoflagellate cysts in marine sediments of the Gulf of Naples (Mediterranean Sea) , 1994 .

[57]  D. Anderson,et al.  SEXUALITY AND CYST FORMATION IN THE DINOFLAGELLATE GONYAULAX TAMARENSIS: CYST YIELD IN BATCH CULTURES 1 , 1984 .

[58]  B. Dale Cyst formation, sedimentation, and preservation: Factors affecting dinoflagellate assemblages in recent sediments from trondheimsfjord, Norway , 1976 .

[59]  B. A. Burov,et al.  Scrippsiella trochoidea cysts in recent sediments from Amur Bay, Sea of Japan: distribution and phylogeny , 2016 .

[60]  Jari Oksanen,et al.  Vegan: an introduction to ordination , 2015 .

[61]  Philippe Huneman,et al.  Handbook of Evolutionary Thinking in the Sciences , 2015, Springer Netherlands.

[62]  A. Pocheville The Ecological Niche: History and Recent Controversies , 2015 .

[63]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[64]  K. Mertens Morphological variation in dinoflagellate cysts: current status and future challenges , 2013 .

[65]  O. N. Yasakova ANNUAL DYNAMICS OF TOXIC PHYTOPLANKTON IN NOVOROSSIYSK BAY , 2010 .

[66]  S. Moncheva,et al.  RESTING STAGES PRODUCED BY PLANKTON IN THE BLACK SEA - BIODIVERSITY AND ECOLOGICAL PERSPECTIVE , 2010 .

[67]  N. Bodeanu ALGAL BLOOMS IN ROMANIAN BLACK SEA WATERS IN THE LAST TWO DECADES OF THE XX th CENTURY , 2002 .

[68]  S. Yamane,et al.  Distribution and Phylogeny , 1990 .

[69]  H. Barnes Oceanography and marine biology : an annual review , 1986 .