EXPLICIT EIGHTH ORDER TWO-STEP METHODS WITH NINE STAGES FOR INTEGRATING OSCILLATORY PROBLEMS

We present a new explicit hybrid two step method for the solution of second order initial value problem. It costs only nine function evaluations per step and attains eighth algebraic order so it is the cheapest in the literature. Its coefficients are chosen to reduce amplification and phase errors. Thus the method is well suited for facing problems with oscillatory solutions. After implementing a MATLAB program, we proceed with numerical tests that justify our effort.

[1]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[2]  M. M. Chawla,et al.  An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .

[3]  C. Tsitouras Explicit two-step methods for second-order linear IVPs , 2002 .

[4]  T. E. Simos,et al.  A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .

[5]  Georgios Psihoyios,et al.  Effective Numerical Approximation of Schrödinger type Equations through Multiderivative Exponentially‐fitted Schemes , 2004 .

[6]  Ch. Tsitouras,et al.  Explicit Numerov Type Methods with Reduced Number of Stages , 2003 .

[7]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[8]  R. Van Dooren Stabilization of Cowell's classical finite difference method for numerical integration , 1974 .

[9]  G. Psihoyios,et al.  Efficient Numerical Solution of Orbital Problems with the use of Symmetric Four-step Trigonometrically-fitted Methods , 2004 .

[10]  Tom E. Simos,et al.  Eighth-order methods for elastic scattering phase shifts , 1997 .

[11]  M. Denham,et al.  The mathematica book: Stephen Wolfram. Wolfram Media/Cambridge University Press, 3rd edition (1996) , 1997 .

[12]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[13]  Manuel Calvo,et al.  Short note: a new minimum storage Runge-Kutta scheme for computational acoustics , 2004 .

[14]  M. M. Chawla Two-step fourth orderP-stable methods for second order differential equations , 1981 .

[15]  R. P. K. Chan,et al.  Order conditions and symmetry for two-step hybrid methods , 2004, Int. J. Comput. Math..

[16]  L. Brusa,et al.  A one‐step method for direct integration of structural dynamic equations , 1980 .

[17]  Ch. Tsitouras,et al.  A general family of explicit Runge-Kutta pairs of orders 6(5) , 1996 .

[18]  E. Hairer Unconditionally stable methods for second order differential equations , 1979 .

[19]  Jeff Cash High orderP-stable formulae for the numerical integration of periodic initial value problems , 1981 .

[20]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[21]  C. Tsitouras Stage Reduction on P-Stable Numerov Type Methods of Eighth Order , 2006, International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004).

[22]  Tom E. Simos Explicit eighth order methods for the numerical integration of initial-value problems with periodic or oscillating solutions , 1999 .

[23]  M. M. Chawla,et al.  Numerov made explicit has better stability , 1984 .

[24]  Charalampos Tsitouras Dissipative high phase-lag order methods , 2001, Appl. Math. Comput..

[25]  C. Tsitouras A parameter study of explicit Runge-Kutta pairs of orders 6(5) , 1998 .

[26]  John P. Coleman,et al.  Order conditions for a class of two‐step methods for y″ = f (x, y) , 2003 .

[27]  Theodore E. Simos Dissipative High Phase-lag Order Numerov-type Methods for the Numerical Solution of the Schrödinger Equation , 1999, Comput. Chem..

[29]  S. N. Papakostas,et al.  High Phase-Lag-Order Runge-Kutta and Nyström Pairs , 1999, SIAM J. Sci. Comput..

[30]  G. Avdelas,et al.  Dissipative high phase-lag order numerov-type methods for the numerical solution of the Schrodinger equation , 2000 .

[31]  Ch. Tsitouras,et al.  Optimized explicit Runge-Kutta pair of orders 9(8) , 2001 .

[32]  Theodore E. Simos,et al.  Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions , 2003, Numerical Algorithms.

[33]  Theodore E. Simos,et al.  New Insights in the Development of Numerov-type Methods with Minimal Phase-lag for the Numerical Solution of the Schrödinger Equation , 2001, Comput. Chem..

[34]  Mari Paz Calvo,et al.  High-Order Symplectic Runge-Kutta-Nyström Methods , 1993, SIAM J. Sci. Comput..

[35]  J. Butcher On Runge-Kutta processes of high order , 1964, Journal of the Australian Mathematical Society.