EXPLICIT EIGHTH ORDER TWO-STEP METHODS WITH NINE STAGES FOR INTEGRATING OSCILLATORY PROBLEMS
暂无分享,去创建一个
[1] J. Lambert,et al. Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .
[2] M. M. Chawla,et al. An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .
[3] C. Tsitouras. Explicit two-step methods for second-order linear IVPs , 2002 .
[4] T. E. Simos,et al. A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .
[5] Georgios Psihoyios,et al. Effective Numerical Approximation of Schrödinger type Equations through Multiderivative Exponentially‐fitted Schemes , 2004 .
[6] Ch. Tsitouras,et al. Explicit Numerov Type Methods with Reduced Number of Stages , 2003 .
[7] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[8] R. Van Dooren. Stabilization of Cowell's classical finite difference method for numerical integration , 1974 .
[9] G. Psihoyios,et al. Efficient Numerical Solution of Orbital Problems with the use of Symmetric Four-step Trigonometrically-fitted Methods , 2004 .
[10] Tom E. Simos,et al. Eighth-order methods for elastic scattering phase shifts , 1997 .
[11] M. Denham,et al. The mathematica book: Stephen Wolfram. Wolfram Media/Cambridge University Press, 3rd edition (1996) , 1997 .
[12] M H Chawla,et al. A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .
[13] Manuel Calvo,et al. Short note: a new minimum storage Runge-Kutta scheme for computational acoustics , 2004 .
[14] M. M. Chawla. Two-step fourth orderP-stable methods for second order differential equations , 1981 .
[15] R. P. K. Chan,et al. Order conditions and symmetry for two-step hybrid methods , 2004, Int. J. Comput. Math..
[16] L. Brusa,et al. A one‐step method for direct integration of structural dynamic equations , 1980 .
[17] Ch. Tsitouras,et al. A general family of explicit Runge-Kutta pairs of orders 6(5) , 1996 .
[18] E. Hairer. Unconditionally stable methods for second order differential equations , 1979 .
[19] Jeff Cash. High orderP-stable formulae for the numerical integration of periodic initial value problems , 1981 .
[20] J. Butcher. Implicit Runge-Kutta processes , 1964 .
[21] C. Tsitouras. Stage Reduction on P-Stable Numerov Type Methods of Eighth Order , 2006, International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004).
[22] Tom E. Simos. Explicit eighth order methods for the numerical integration of initial-value problems with periodic or oscillating solutions , 1999 .
[23] M. M. Chawla,et al. Numerov made explicit has better stability , 1984 .
[24] Charalampos Tsitouras. Dissipative high phase-lag order methods , 2001, Appl. Math. Comput..
[25] C. Tsitouras. A parameter study of explicit Runge-Kutta pairs of orders 6(5) , 1998 .
[26] John P. Coleman,et al. Order conditions for a class of two‐step methods for y″ = f (x, y) , 2003 .
[27] Theodore E. Simos. Dissipative High Phase-lag Order Numerov-type Methods for the Numerical Solution of the Schrödinger Equation , 1999, Comput. Chem..
[29] S. N. Papakostas,et al. High Phase-Lag-Order Runge-Kutta and Nyström Pairs , 1999, SIAM J. Sci. Comput..
[30] G. Avdelas,et al. Dissipative high phase-lag order numerov-type methods for the numerical solution of the Schrodinger equation , 2000 .
[31] Ch. Tsitouras,et al. Optimized explicit Runge-Kutta pair of orders 9(8) , 2001 .
[32] Theodore E. Simos,et al. Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions , 2003, Numerical Algorithms.
[33] Theodore E. Simos,et al. New Insights in the Development of Numerov-type Methods with Minimal Phase-lag for the Numerical Solution of the Schrödinger Equation , 2001, Comput. Chem..
[34] Mari Paz Calvo,et al. High-Order Symplectic Runge-Kutta-Nyström Methods , 1993, SIAM J. Sci. Comput..
[35] J. Butcher. On Runge-Kutta processes of high order , 1964, Journal of the Australian Mathematical Society.