Computational complexity of Boolean functions

Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.

[1]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[2]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[3]  Quelques résultats sur l’application de l’algèbre de Boole a la synthèse des circuits a relais , 1952 .

[4]  David E. Muller,et al.  Complexity in Electronic Switching Circuits , 1956, IRE Trans. Electron. Comput..

[5]  John E. Savage,et al.  The Complexity of Computing , 1976 .

[6]  L. A. Sholomov A sequence of complexly computable functions , 1975 .

[7]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[8]  William H. Kautz,et al.  A Survey and Assessment of Progress in Switching Theory and Logical Design in the Soviet Union , 1966, IEEE Trans. Electron. Comput..

[9]  Nicholas Pippenger Information theory and the complexity of boolean functions , 2005, Mathematical systems theory.

[10]  V. M. Khrapchenko Method of determining lower bounds for the complexity of P-schemes , 1971 .

[11]  Edward F. Moore Minimal Complete Relay Decoding Networks , 1960, IBM J. Res. Dev..

[12]  Some properties of Shannon functions , 1970 .

[13]  Claude E. Shannon,et al.  A symbolic analysis of relay and switching circuits , 1938, Transactions of the American Institute of Electrical Engineers.

[14]  V. M. Khrapchenko Complexity of the realization of a linear function in the class of II-circuits , 1971 .

[15]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[16]  The depth of Boolean functions realized by circuits over an arbitrary basis , 2007 .

[17]  S. A. Lozhkin Synthesis of formulas whose complexity and depth do not exceed the asymptotically best estimates of high degree of accuracy , 2007 .

[18]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[19]  A. Razborov Lower bounds on monotone complexity of the logical permanent , 1985 .

[20]  N. P. Red’kin Proof of Minimality of Circuits Consisting of Functional Elements , 1973 .

[21]  Nicholas Pippenger,et al.  The shortest disjunctive normal form of a random Boolean function , 2003, Random Struct. Algorithms.

[22]  D. U. Cherukhin On an infinite sequence of improving Boolean bases , 2001, Discret. Appl. Math..

[23]  A. A. Razborov Lower bounds of the complexity of symmetric boolean functions of contact-rectifier circuits , 1990 .

[24]  A. A. Sapozhenko,et al.  Boolean function minimization in the class of disjunctive normal forms , 1989 .

[25]  Claus-Peter Schnorr The Combinational Complexity of Equivalence , 1976, Theor. Comput. Sci..

[26]  A. E. Andreev A method for obtaining efficient lower bounds for monotone complexity , 1987 .

[27]  Claude E. Shannon,et al.  The Number of Two‐Terminal Series‐Parallel Networks , 1942 .

[28]  L. H. Harper An log lower bound on synchronous combinational complexity , 1977 .

[29]  John E. Savage,et al.  Lower Bounds on Synchronous Combinational Complexity , 1979, SIAM J. Comput..

[30]  A. D. Korshunov,et al.  Monotone Boolean functions , 2003 .

[31]  On the complexity of realization of the linear function by formulas over finite Boolean bases , 2000 .

[32]  Michael J. Fischer,et al.  Lower bounds on the size of Boolean formulas: Preliminary Report , 1975, STOC '75.