Conservation of regulatory sequences and gene expression patterns in the disintegrating Drosophila Hox gene complex.

Homeotic (Hox) genes are usually clustered and arranged in the same order as they are expressed along the anteroposterior body axis of metazoans. The mechanistic explanation for this colinearity has been elusive, and it may well be that a single and universal cause does not exist. The Hox-gene complex (HOM-C) has been rearranged differently in several Drosophila species, producing a striking diversity of Hox gene organizations. We investigated the genomic and functional consequences of the two HOM-C splits present in Drosophila buzzatii. Firstly, we sequenced two regions of the D. buzzatii genome, one containing the genes labial and abdominal A, and another one including proboscipedia, and compared their organization with that of D. melanogaster and D. pseudoobscura in order to map precisely the two splits. Then, a plethora of conserved noncoding sequences, which are putative enhancers, were identified around the three Hox genes closer to the splits. The position and order of these enhancers are conserved, with minor exceptions, between the three Drosophila species. Finally, we analyzed the expression patterns of the same three genes in embryos and imaginal discs of four Drosophila species with different Hox-gene organizations. The results show that their expression patterns are conserved despite the HOM-C splits. We conclude that, in Drosophila, Hox-gene clustering is not an absolute requirement for proper function. Rather, the organization of Hox genes is modular, and their clustering seems the result of phylogenetic inertia more than functional necessity.

[1]  J. Schein,et al.  A BAC-based physical map of the Drosophila buzzatii genome. , 2005, Genome research.

[2]  W. Bender,et al.  Enhancer point mutation results in a homeotic transformation in Drosophila. , 1994, Science.

[3]  K. Mita,et al.  Organization of the Hox gene cluster of the silkworm, Bombyx mori: a split of the Hox cluster in a non-Drosophila insect , 2004, Development Genes and Evolution.

[4]  T. Kaufman,et al.  Characterization of the Hox cluster from the mosquito Anopheles gambiae (Diptera: culicidae) , 2000, Evolution & development.

[5]  A. J. Lopez,et al.  Evolutionary conservation of the structure and expression of alternatively spliced Ultrabithorax isoforms from Drosophila. , 1994, Genetics.

[6]  T. Kaufman,et al.  Expression patterns of the rogue Hox genes Hox3/zen and fushi tarazu in the apterygote insect Thermobia domestica , 2004, Evolution & development.

[7]  Hans Lehrach,et al.  Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica , 2004, Nature.

[8]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[9]  T. Kaufman,et al.  Structural changes in the antennapedia complex of Drosophila pseudoobscura. , 1993, Genetics.

[10]  M. Akam,et al.  A Hox gene mutation that triggers nonsense-mediated RNA decay and affects alternative splicing during Drosophila development. , 2003, Nucleic acids research.

[11]  E. Lewis,et al.  The abdominal region of the bithorax complex , 1985, Cell.

[12]  Inna Dubchak,et al.  Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. , 2005, Genome research.

[13]  Gene Ontology Consortium The Gene Ontology (GO) database and informatics resource , 2003 .

[14]  S. Carroll,et al.  The regulatory content of intergenic DNA shapes genome architecture , 2004, Genome Biology.

[15]  M. Affolter,et al.  A HOX complex, a repressor element and a 50 bp sequence confer regional specificity to a DPP-responsive enhancer. , 2001, Development.

[16]  M. Akam,et al.  Hox genes and the phylogeny of the arthropods , 2001, Current Biology.

[17]  E. Sánchez-Herrero,et al.  The hernandez and fernandez genes of Drosophila specify eye and antenna. , 2003, Developmental biology.

[18]  E. Lewis,et al.  Evolution of the homeobox complex in the Diptera , 2003, Current Biology.

[19]  Matthew W. Hahn,et al.  The evolution of transcriptional regulation in eukaryotes. , 2003, Molecular biology and evolution.

[20]  Adam Eyre-Walker,et al.  Patterns of evolutionary constraints in intronic and intergenic DNA of Drosophila. , 2004, Genome research.

[21]  G. Olsen,et al.  Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. , 1990, Advances in genetics.

[22]  Nicholas L. Bray,et al.  AVID: A global alignment program. , 2003, Genome research.

[23]  G. Wagner,et al.  Hox cluster duplications and the opportunity for evolutionary novelties , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. Salzberg,et al.  Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura , 2004, Genome Biology.

[25]  G. Struhl Splitting the bithorax complex of Drosophila , 1984, Nature.

[26]  I. Duncan,et al.  The bithorax complex. , 1987, Annual review of genetics.

[27]  D. Ferrier,et al.  Evolution of the Hox/ParaHox gene clusters. , 2003, The International journal of developmental biology.

[28]  Axel Meyer,et al.  Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. , 2003, Genome research.

[29]  A. Gnirke,et al.  Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome , 2002, Genome Biology.

[30]  T. Kaufman,et al.  Cytogenetic Analysis of Chromosome 3 in DROSOPHILA MELANOGASTER: The Homoeotic Gene Complex in Polytene Chromosome Interval 84a-B. , 1980, Genetics.

[31]  F H Ruddle,et al.  Evolution of Hox genes. , 1994, Annual review of genetics.

[32]  T. Kaufman,et al.  A functional analysis of 5', intronic and promoter regions of the homeotic gene proboscipedia in Drosophila melanogaster. , 1995, Development.

[33]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[34]  A. Ruíz,et al.  Chromosomal elements evolve at different rates in the Drosophila genome. , 2002, Genetics.

[35]  D. Duboule,et al.  Organizing Axes in Time and Space; 25 Years of Colinear Tinkering , 2003, Science.

[36]  J. Burr,et al.  Functional analysis of repressor binding sites in the iab-2 regulatory region of the abdominal-A homeotic gene. , 2000, Developmental biology.

[37]  Ferran Casals,et al.  How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. , 2001, Genome research.

[38]  T. Kaufman,et al.  Control of expression of the homeotic labial (lab) locus of Drosophila melanogaster: evidence for both positive and negative autogenous regulation. , 1991, Development.

[39]  E. Lewis,et al.  Complete sequence of the bithorax complex of Drosophila. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Carl J. Schmidt,et al.  GoFigure: Automated Gene OntologyTM annotation , 2003, Bioinform..

[41]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[42]  E. Lewis,et al.  Splits in fruitfly Hox gene complexes , 1996, Nature.

[43]  Alexander K. Hudek,et al.  Genescript: DNA Sequence Annotation Pipeline , 2003, Bioinform..

[44]  D. Petrov,et al.  High intrinsic rate of DNA loss in Drosophila , 1996, Nature.

[45]  William McGinnis,et al.  Homeobox genes and axial patterning , 1992, Cell.

[46]  Lior Pachter,et al.  VISTA : visualizing global DNA sequence alignments of arbitrary length , 2000, Bioinform..

[47]  D. Petrov,et al.  Rapid sequence turnover at an intergenic locus in Drosophila. , 2004, Molecular biology and evolution.

[48]  Thomas L. Madden,et al.  BLAST: at the core of a powerful and diverse set of sequence analysis tools , 2004, Nucleic Acids Res..

[49]  I-Min A. Dubchak,et al.  Active conservation of noncoding sequences revealed by three-way species comparisons. , 2000, Genome research.

[50]  E. Myers,et al.  Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence , 2002, Genome Biology.

[51]  M. Blaxter,et al.  Hox gene evolution in nematodes: novelty conserved. , 2003, Current opinion in genetics & development.

[52]  M. Kreitman,et al.  Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. , 2001, Genome research.

[53]  M. Nóbrega,et al.  Scanning Human Gene Deserts for Long-Range Enhancers , 2003, Science.

[54]  C. Desmarais,et al.  Automated finishing with autofinish. , 2001, Genome research.

[55]  Mario Cáceres,et al.  A new split of the Hox gene complex in Drosophila: relocation and evolution of the gene labial. , 2003, Molecular biology and evolution.

[56]  D. Petrov,et al.  Genome size and intron size in Drosophila. , 1998, Molecular biology and evolution.

[57]  Matthew Berriman,et al.  Viewing and Annotating Sequence Data with Artemis , 2003, Briefings Bioinform..

[58]  Arend Sidow,et al.  Genomic regulatory regions: insights from comparative sequence analysis. , 2003, Current opinion in genetics & development.

[59]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[60]  G. K. Davis,et al.  Short, long, and beyond: molecular and embryological approaches to insect segmentation. , 2002, Annual review of entomology.

[61]  T. Kaufman,et al.  Hox genes and the evolution of the arthropod body plan 1 , 2002, Evolution & development.

[62]  T. Gojobori,et al.  Rates of synonymous substitution and base composition of nuclear genes in Drosophila. , 1992, Genetics.

[63]  G. Morata,et al.  Expression and regulation of the abd-A gene of Drosophila. , 1990, Development.

[64]  Urs Schmidt-Ott,et al.  A single Hox3 gene with composite bicoid and zerknüllt expression characteristics in non-Cyclorrhaphan flies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  E. Lewis A gene complex controlling segmentation in Drosophila , 1978, Nature.

[66]  N. Satoh,et al.  Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development. , 2004, Proceedings of the National Academy of Sciences of the United States of America.