Statistical aspects of determinantal point processes

The statistical aspects of determinantal point processes (DPPs) seem largely unexplored. We review the appealing properties of DDPs, demonstrate that they are useful models for repulsiveness, detail a simulation procedure, and provide freely available software for simulation and statistical inference. We pay special attention to stationary DPPs, where we give a simple condition ensuring their existence, construct parametric models, describe how they can be well approximated so that the likelihood can be evaluated and realizations can be simulated, and discuss how statistical inference is conducted using the likelihood or moment properties.

[1]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  E. B. Jensen,et al.  Asymptotic Palm likelihood theory for stationary point processes , 2013 .

[3]  B. Ripley Modelling Spatial Patterns , 1977 .

[4]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[5]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[6]  M. Palma,et al.  Covariance functions and models for complex-valued random fields , 2003 .

[7]  Antti Penttinen,et al.  Modern Statistics for Spatial Point Processes. Commentary , 2007 .

[8]  T. Shirai,et al.  Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes , 2003 .

[9]  Trevor Bailey,et al.  Statistical Analysis of Spatial Point Patterns. Second Edition. By PETER J. DIGGLE (London: Edward Arnold). [Pp. viii+159]. ISBN 0-340-74070-1. Price £40.00. Hardback , 2004, Int. J. Geogr. Inf. Sci..

[10]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[11]  J. Møller,et al.  Handbook of Spatial Statistics , 2008 .

[12]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[13]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[14]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[15]  Yuval Peres,et al.  Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.

[16]  P. Diggle,et al.  Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .

[17]  H. Georgii,et al.  Conditional Intensity and Gibbsianness of Determinantal Point Processes , 2004, math/0401402.

[18]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[19]  T. Shirai,et al.  Random point fields associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties , 2003 .

[20]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[21]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[22]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[23]  Tilmann Gneiting,et al.  Normal scale mixtures and dual probability densities , 1997 .

[24]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[25]  M. Solomjak,et al.  Spectral Theory of Self-Adjoint Operators in Hilbert Space , 1987 .

[26]  Adrian Baddeley,et al.  spatstat: An R Package for Analyzing Spatial Point Patterns , 2005 .

[27]  Horst Alzer,et al.  On some inequalities for the incomplete gamma function , 1997, Math. Comput..

[28]  B. Ripley The Second-Order Analysis of Stationary Point Processes , 1976 .

[29]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[30]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[31]  Chase E. Zachary,et al.  Statistical properties of determinantal point processes in high-dimensional Euclidean spaces. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  W. Kendall,et al.  Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes , 2000, Advances in Applied Probability.

[33]  Y. Peres,et al.  Determinantal Processes and Independence , 2005, math/0503110.

[34]  T. Gneiting Compactly Supported Correlation Functions , 2002 .

[35]  E. R. Speer,et al.  Realizability of Point Processes , 2007 .

[36]  P. McCullagh,et al.  The permanental process , 2006 .