Integrating virtual screening in lead discovery.

[1]  T. T. Tanimoto SECTION OF BIOLOGICAL AND MEDICAL SCIENCES AND DIVISION OF MATHEMATICS: A NONLINEAR MODEL FOR A COMPUTER‐ASSISTED MEDICAL DIAGNOSTIC PROCEDURE* , 1961 .

[2]  A. Tversky Features of Similarity , 1977 .

[3]  Marvin Johnson,et al.  Concepts and applications of molecular similarity , 1990 .

[4]  P. Artursson,et al.  Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. , 1990, Journal of pharmaceutical sciences.

[5]  A. Doig,et al.  Toward the semiquantitative estimation of binding constants guides for peptide peptide binding in aqueous solution , 1991 .

[6]  Manfred J. Sippl,et al.  Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures , 1993, J. Comput. Aided Mol. Des..

[7]  Philip Jonathan,et al.  Statistical thinking and technique for QSAR and related studies. Part II: Specific methods , 1994 .

[8]  Steven L. Teig,et al.  Chemical Function Queries for 3D Database Search , 1994, J. Chem. Inf. Comput. Sci..

[9]  Hans-Joachim Böhm,et al.  The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[10]  M J Sippl,et al.  Knowledge-based potentials for proteins. , 1995, Current opinion in structural biology.

[11]  Gennady M Verkhivker,et al.  Empirical free energy calculations of ligand-protein crystallographic complexes. I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity. , 1995, Protein engineering.

[12]  Ajay,et al.  Computational methods to predict binding free energy in ligand-receptor complexes. , 1995, Journal of medicinal chemistry.

[13]  J. A. Grant,et al.  A fast method of molecular shape comparison: A simple application of a Gaussian description of molecular shape , 1996, J. Comput. Chem..

[14]  Garland R. Marshall,et al.  VALIDATE: A New Method for the Receptor-Based Prediction of Binding Affinities of Novel Ligands , 1996 .

[15]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[16]  D Horvath,et al.  A virtual screening approach applied to the search for trypanothione reductase inhibitors. , 1997, Journal of medicinal chemistry.

[17]  R Abagyan,et al.  Flexible protein–ligand docking by global energy optimization in internal coordinates , 1997, Proteins.

[18]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[19]  Luhua Lai,et al.  SCORE: A New Empirical Method for Estimating the Binding Affinity of a Protein-Ligand Complex , 1998 .

[20]  Jürgen Drews,et al.  Innovation deficit revisited: reflections on the productivity of pharmaceutical R&D , 1998 .

[21]  Mark A. Murcko,et al.  Virtual screening : an overview , 1998 .

[22]  Hans-Joachim Böhm,et al.  Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs , 1998, J. Comput. Aided Mol. Des..

[23]  Dudley H. Williams,et al.  Estimating binding constants – The hydrophobic effect and cooperativity , 1999 .

[24]  Y. Martin,et al.  A general and fast scoring function for protein-ligand interactions: a simplified potential approach. , 1999, Journal of medicinal chemistry.

[25]  W A Koppensteiner,et al.  Sustained performance of knowledge‐based potentials in fold recognition , 1999, Proteins.

[26]  Schmid,et al.  "Scaffold-Hopping" by Topological Pharmacophore Search: A Contribution to Virtual Screening. , 1999, Angewandte Chemie.

[27]  M. Abraham,et al.  The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. , 1999, Journal of pharmaceutical sciences.

[28]  S. Pickett,et al.  GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. , 2000, Journal of medicinal chemistry.

[29]  Osman F. Güner,et al.  Pharmacophore perception, development, and use in drug design , 2000 .

[30]  P Willett,et al.  Chemoinformatics - similarity and diversity in chemical libraries. , 2000, Current opinion in biotechnology.

[31]  B Testa,et al.  Predicting blood-brain barrier permeation from three-dimensional molecular structure. , 2000, Journal of medicinal chemistry.

[32]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[33]  D F Horrobin,et al.  Innovation in the pharmaceutical industry , 2000, Journal of the Royal Society of Medicine.

[34]  Enrico Di Cera Thermodynamics in biology , 2000 .

[35]  B. A. Luty,et al.  Discovering high-affinity ligands from the computationally predicted structures and affinities of small molecules bound to a target: A virtual screening approach , 2000 .

[36]  Jarmo Huuskonen,et al.  Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology , 2000, J. Chem. Inf. Comput. Sci..

[37]  P. Carrupt,et al.  Molecular fields in quantitative structure–permeation relationships: the VolSurf approach , 2000 .

[38]  Tudor I. Oprea,et al.  Property distribution of drug-related chemical databases* , 2000, J. Comput. Aided Mol. Des..

[39]  Shaomeng Wang,et al.  How Does Consensus Scoring Work for Virtual Library Screening? An Idealized Computer Experiment , 2001, J. Chem. Inf. Comput. Sci..

[40]  J. Andrew Grant,et al.  A smooth permittivity function for Poisson–Boltzmann solvation methods , 2001, J. Comput. Chem..

[41]  T J Campbell,et al.  HERG K+ channels: friend and foe. , 2001, Trends in pharmacological sciences.

[42]  Y. Martin Diverse viewpoints on computational aspects of molecular diversity. , 2001, Journal of combinatorial chemistry.

[43]  Todd J. A. Ewing,et al.  DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases , 2001, J. Comput. Aided Mol. Des..

[44]  Tudor I. Oprea,et al.  Virtual Screening in Lead Discovery: A Viewpoint† , 2002, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[45]  Paul D Lyne,et al.  Structure-based virtual screening: an overview. , 2002, Drug discovery today.

[46]  Gerhard Klebe,et al.  Successful virtual screening for novel inhibitors of human carbonic anhydrase: strategy and experimental confirmation. , 2002, Journal of medicinal chemistry.

[47]  J Mestres Virtual screening: a real screening complement to high-throughput screening. , 2002, Biochemical Society transactions.

[48]  Scott Boyer,et al.  New methods in predictive metabolism , 2002, J. Comput. Aided Mol. Des..

[49]  Manfred Kansy,et al.  Predicting plasma protein binding of drugs: a new approach. , 2002, Biochemical pharmacology.

[50]  Luhua Lai,et al.  Further development and validation of empirical scoring functions for structure-based binding affinity prediction , 2002, J. Comput. Aided Mol. Des..

[51]  D. Goodsell,et al.  Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock , 2002, Proteins.

[52]  Gerhard Klebe,et al.  Docking into knowledge-based potential fields: a comparative evaluation of DrugScore. , 2002, Journal of medicinal chemistry.

[53]  Gisbert Schneider,et al.  A Virtual Screening Method for Prediction of the hERG Potassium Channel Liability of Compound Libraries , 2002, Chembiochem : a European journal of chemical biology.

[54]  Lars Naerum,et al.  Scaffold hopping and optimization towards libraries of glycogen synthase kinase-3 inhibitors. , 2002, Bioorganic & medicinal chemistry letters.

[55]  Tudor I. Oprea Current trends in lead discovery: Are we looking for the appropriate properties? , 2002, J. Comput. Aided Mol. Des..

[56]  T. Klabunde,et al.  Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure-activity relationships and nuclear magnetic resonance studies on urotensin II. , 2002, Journal of medicinal chemistry.

[57]  Tudor I. Oprea,et al.  Chemical space navigation in lead discovery. , 2002, Current opinion in chemical biology.

[58]  A. Cavalli,et al.  Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers. , 2002, Journal of medicinal chemistry.

[59]  E. Shakhnovich,et al.  SMall Molecule Growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. , 2002, Journal of medicinal chemistry.

[60]  Herman W. T. van Vlijmen,et al.  Identification of Potent and Novel α4β1 Antagonists Using in Silico Screening , 2002 .

[61]  Franco Lombardo,et al.  Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. , 2002, Journal of medicinal chemistry.

[62]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[63]  Hans-Joachim Böhm,et al.  A guide to drug discovery: Hit and lead generation: beyond high-throughput screening , 2003, Nature Reviews Drug Discovery.

[64]  D. Fabbro,et al.  Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. , 2003, Journal of medicinal chemistry.

[65]  J. A. Grant,et al.  Gaussian docking functions. , 2003, Biopolymers.

[66]  Roy J. Vaz,et al.  Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. , 2003, Bioorganic & medicinal chemistry letters.

[67]  Gabriele Cruciani,et al.  Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9. , 2003, Journal of medicinal chemistry.

[68]  Ruben Abagyan,et al.  Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Gabriele Cruciani,et al.  Surface descriptors for protein-ligand affinity prediction. , 2003, Journal of medicinal chemistry.

[70]  J. V. Drie Pharmacophore Discovery: A Critical Review , 2003 .

[71]  Chen Xu,et al.  Identification of novel inhibitors of BCR-ABL tyrosine kinase via virtual screening. , 2003, Bioorganic & medicinal chemistry letters.

[72]  Gerhard Klebe,et al.  Virtual screening for submicromolar leads of tRNA-guanine transglycosylase based on a new unexpected binding mode detected by crystal structure analysis. , 2003, Journal of medicinal chemistry.

[73]  Jose Cosme,et al.  Crystal structure of human cytochrome P450 2C9 with bound warfarin , 2003, Nature.

[74]  Robert Pearlstein,et al.  Understanding the structure-activity relationship of the human ether-a-go-go-related gene cardiac K+ channel. A model for bad behavior. , 2003, Journal of medicinal chemistry.

[75]  J. Alvarez High-throughput docking as a source of novel drug leads. , 2004, Current opinion in chemical biology.

[76]  Andrew M Davis,et al.  Predictive ADMET studies, the challenges and the opportunities. , 2004, Current opinion in chemical biology.

[77]  Anders Karlén,et al.  Conformer- and alignment-independent model for predicting structurally diverse competitive CYP2C9 inhibitors. , 2004, Journal of medicinal chemistry.

[78]  Calculated Molecular Properties and Multivariate Statistical Analysis in Absorption Prediction , 2004 .

[79]  Franco Lombardo,et al.  Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. , 2004, Journal of medicinal chemistry.

[80]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[81]  R. Mannhold,et al.  VOLSURF: A Tool for Drug ADME‐Properties Prediction , 2004 .