Multipower Variation for Brownian Semistationary Processes

In this paper we study the asymptotic behaviour of power and multipower variations of processes Y : Yt = Z t 1 g(t s) sW (ds) +Zt

[1]  Jordan Stoyanov,et al.  From Stochastic Calculus to Mathematical Finance , 2006 .

[2]  N. Shephard,et al.  Impact of jumps on returns and realised variances: econometric analysis of time-deformed Lévy processes , 2006 .

[3]  N. Shephard,et al.  Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics , 2004 .

[4]  M. Podolskij,et al.  A Note on the Central Limit Theorem for Bipower Variation of General Functions. , 2008 .

[5]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[6]  Neil Shephard,et al.  Limit theorems for multipower variation in the presence of jumps , 2006 .

[7]  O. Barndorff-Nielsen,et al.  Lévy-based spatial-temporal modelling, with applications to turbulence , 2004 .

[8]  Power Variation Analysis of Some Integral Long-Memory Processes , 2007 .

[9]  Arnaud Bégyn Functional limit theorems for generalized quadratic variations of Gaussian processes , 2007 .

[10]  N. Shephard,et al.  Econometric analysis of realised volatility and its use in estimating stochastic volatility models , 2000 .

[11]  G. Peccati,et al.  Noncentral convergence of multiple integrals , 2007, 0709.3903.

[12]  Almut E. D. Veraart INFERENCE FOR THE JUMP PART OF QUADRATIC VARIATION OF ITÔ SEMIMARTINGALES , 2008, Econometric Theory.

[13]  Jean Jacod,et al.  Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.

[14]  Estimation of integrated volatility in stochastic volatility models , 2005 .

[15]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[16]  Jeannette H. C. Woerner Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models , 2003 .

[17]  Power variation for Gaussian processes with stationary increments , 2009 .

[18]  Jeannette H. C. Woerner Power and Multipower Variation: inference for high frequency data , 2006 .

[19]  X. Guyon,et al.  Convergence en loi des H-variations d'un processus gaussien stationnaire sur R , 1989 .

[20]  Power variation of some integral fractional processes , 2006 .

[21]  Ole E. Barndorff-Nielsen,et al.  Ambit Processes; with Applications to Turbulence and Tumour Growth , 2007 .

[22]  Arnaud Bégyn Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes , 2007, 0709.0598.

[23]  N. Shephard,et al.  Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics , 2002 .

[24]  David Nualart,et al.  Central limit theorems for multiple stochastic integrals and Malliavin calculus , 2007 .

[25]  Renormalized self-intersection local time for fractional Brownian motion , 2005, math/0506592.

[26]  David Aldous,et al.  On Mixing and Stability of Limit Theorems , 1978 .

[27]  Jean Jacod,et al.  Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes , 2009 .

[28]  Ole E. Barndorff-Nielsen,et al.  Brownian Semistationary Processes and Volatility/Intermittency , 2009 .

[29]  Valeri Voev,et al.  Least Squares Inference on Integrated Volatility and the Relationship between Efficient Prices and Noise , 2011 .

[30]  Ole E. Barndorff-Nielsen,et al.  A Stochastic Differential Equation Framework for the Timewise Dynamics of Turbulent Velocities , 2008 .

[31]  G. Peccati,et al.  Gaussian Limits for Vector-valued Multiple Stochastic Integrals , 2005 .

[32]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[33]  Jeannette H. C. Woerner Inference in Lévy-type stochastic volatility models , 2007, Advances in Applied Probability.

[34]  Jean Jacod,et al.  A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .

[35]  O. Barndorff-Nielsen,et al.  Lévy-based Tempo-Spatial Modelling; with Applications to Turbulence , 2003 .

[36]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[37]  N. Shephard,et al.  LIMIT THEOREMS FOR BIPOWER VARIATION IN FINANCIAL ECONOMETRICS , 2005, Econometric Theory.

[38]  O. Barndorff-Nielsen,et al.  Bipower Variation for Gaussian Processes with Stationary Increments , 2008, Journal of Applied Probability.

[39]  Absolute moments in 3-dimensional normal distribution , 1952 .

[40]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[41]  S. Berman Stationary and Related Stochastic Processes , 1967 .

[42]  Ole E. Barndorff-Nielsen,et al.  Time Change, Volatility, and Turbulence , 2008 .

[43]  T. Sun,et al.  A central limit theorem for non-instantaneous filters of a stationary Gaussian Process , 1987 .

[44]  N. Shephard,et al.  Variation, Jumps, Market Frictions and High Frequency Data in Financial Econometrics , 2005 .

[45]  M. Taqqu Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence , 1977 .

[46]  O. Barndorff-Nielsen,et al.  Quasi Ornstein–Uhlenbeck processes , 2009, 0912.3091.

[47]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[48]  J. Doob Stochastic processes , 1953 .

[49]  N. Shephard,et al.  Realised power variation and stochastic volatility models , 2003 .

[50]  Giovanni Peccati,et al.  Central limit theorems for sequences of multiple stochastic integrals , 2005 .