CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE

We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically address the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line "outliers." By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at this http URL, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high resolution $V$-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate resolution $K$-band spectrum of Gliese 51, an M5 field dwarf.

[1]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[2]  M. Schultheis,et al.  High-resolution spectroscopic atlas of M subdwarfs. Effective temperature and metallicity , 2014, 1401.2901.

[3]  David Higdon,et al.  Cosmic calibration: Constraints from the matter power spectrum and the cosmic microwave background , 2007 .

[4]  Michael F. Skrutskie,et al.  THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT: FIRST DETECTION OF HIGH-VELOCITY MILKY WAY BAR STARS , 2012, 1207.3797.

[5]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[6]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[7]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[8]  W. D. Vacca,et al.  THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS , 2009, 0909.0818.

[9]  Jonathan C. Tan,et al.  IN-SYNC I: HOMOGENEOUS STELLAR PARAMETERS FROM HIGH-RESOLUTION APOGEE SPECTRA FOR THOUSANDS OF PRE-MAIN SEQUENCE STARS , 2014, 1408.7113.

[10]  Yue Wu,et al.  ULySS: a full spectrum fitting package , 2009, 0903.2979.

[11]  J. Rowe,et al.  RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR , 2014, 1408.3149.

[12]  Eric Gaidos,et al.  SPECTRO-THERMOMETRY OF M DWARFS AND THEIR CANDIDATE PLANETS: TOO HOT, TOO COOL, OR JUST RIGHT? , 2013, 1311.0003.

[13]  Alan Edelman,et al.  Julia: A Fast Dynamic Language for Technical Computing , 2012, ArXiv.

[14]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[15]  G. Molenberghs,et al.  Estimating stellar parameters from spectra using a hierarchical Bayesian approach , 2007, astro-ph/0701449.

[16]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[17]  John T. Rayner,et al.  An Infrared Spectroscopic Sequence of M, L, and T Dwarfs , 2004, astro-ph/0412313.

[18]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[19]  M. Holman,et al.  IMPROVED SPECTROSCOPIC PARAMETERS FOR TRANSITING PLANET HOSTS , 2012, 1208.1268.

[20]  R. Paul Butler,et al.  A New Planet around an M Dwarf: Revealing a Correlation between Exoplanets and Stellar Mass , 2007, 0707.2409.

[21]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[22]  L. Buchhave,et al.  Three regimes of extrasolar planet radius inferred from host star metallicities , 2014, Nature.

[23]  Suzanne L. Hawley,et al.  The Palomar/MSU Nearby-Star Spectroscopic Survey. I. The Northern M Dwarfs -Bandstrengths and Kinematics , 1995 .

[24]  D. Hogg,et al.  EXOPLANET POPULATION INFERENCE AND THE ABUNDANCE OF EARTH ANALOGS FROM NOISY, INCOMPLETE CATALOGS , 2014, 1406.3020.

[25]  M. Bergemann,et al.  Fundamental stellar parameters and metallicities from Bayesian spectroscopy: application to low- and high-resolution spectra , 2013, 1311.5558.

[26]  James P. Lloyd,et al.  METAL-RICH M-DWARF PLANET HOSTS: METALLICITIES WITH K-BAND SPECTRA , 2010, 1007.4593.

[27]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[28]  W. M. Wood-Vasey,et al.  TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED , 2009, 0908.0536.

[29]  J. Bovy,et al.  Data analysis recipes: Fitting a model to data , 2010, 1008.4686.

[30]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[31]  J. Valenti,et al.  ACCURATE GRAVITIES OF F, G, AND K STARS FROM HIGH RESOLUTION SPECTRA WITHOUT EXTERNAL CONSTRAINTS , 2015, 1503.07180.

[32]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[33]  David Higdon,et al.  THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0902.0429.

[34]  G. Lodato,et al.  Memorie della Società Astronomica Italiana , 2005 .

[35]  S. Roberts,et al.  Precise time series photometry for the Kepler-2.0 mission , 2014, 1412.6304.

[36]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[37]  James P. Lloyd,et al.  METALLICITY AND TEMPERATURE INDICATORS IN M DWARF K-BAND SPECTRA: TESTING NEW AND UPDATED CALIBRATIONS WITH OBSERVATIONS OF 133 SOLAR NEIGHBORHOOD M DWARFS , 2011, 1112.4567.

[38]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[39]  J. B. Laird,et al.  An abundance of small exoplanets around stars with a wide range of metallicities , 2012, Nature.

[40]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[41]  Richard O. Gray,et al.  The Physical Basis of Luminosity Classification in the Late A-, F-, and Early G-Type Stars. I. Precise Spectral Types for 372 Stars , 2000 .

[42]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[43]  G. Furesz,et al.  HAT-P-16b: A 4 MJ PLANET TRANSITING A BRIGHT STAR ON AN ECCENTRIC ORBIT, , 2010, 1005.2009.

[44]  David F. Gray,et al.  SPECTRAL LINE-DEPTH RATIOS AS TEMPERATURE INDICATORS FOR COOL STARS , 1994 .

[45]  James Liebert,et al.  A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4 , 2006, astro-ph/0606700.