Liver segment approximation in CT data for surgical resection planning

Surgical planning of liver tumor resections requires detailed three-dimensional (3D) understanding of the complex arrangement of vasculature, liver segments and tumors. Knowledge about location and sizes of liver segments is important for choosing an optimal surgical resection approach and predicting postoperative residual liver capacity. The aim of this work is to facilitate such surgical planning process by developing a robust method for portal vein tree segmentation. The work also investigates the impact of vessel segmentation on the approximation of liver segment volumes. For segment approximation, smaller portal vein branches are of importance. Small branches, however, are difficult to segment due to noise and partial volume effects. Our vessel segmentation is based on the original gray-values and on the result of a vessel enhancement filter. Validation of the developed portal vein segmentation method in computer generated phantoms shows that, compared to a conventional approach, more vessel branches can be segmented. Experiments with in vivo acquired liver CT data sets confirmed this result. The outcome of a Nearest Neighbor liver segment approximation method applied to phantom data demonstrates, that the proposed vessel segmentation approach translates into a more accurate segment partitioning.

[1]  Alexander Bornik,et al.  Tools for augmented-reality-based liver resection planning , 2004, Medical Imaging: Image-Guided Procedures.

[2]  H.-O. Peitgen,et al.  Mathematik, Complexe Systeme, Medizin: Von der Potentialtheorie zu neuen radiologischen Werkzeugen , 1999 .

[3]  Anil A. Bharath,et al.  Retinal Blood Vessel Segmentation by Means of Scale-Space Analysis and Region Growing , 1999, MICCAI.

[4]  Max A. Viergever,et al.  Blood pool contrast-enhanced MRA: improved arterial visualization in the steady state , 2003, IEEE Transactions on Medical Imaging.

[5]  G. Stuckmann,et al.  Limitations and pitfalls of Couinaud's segmentation of the liver in transaxial Imaging , 2003, European Radiology.

[6]  N. Ayache,et al.  Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery , 2001 .

[7]  Qingfen Lin,et al.  Enhancement, Extraction, and Visualization of 3D Volume Data , 2001 .

[8]  Alejandro F. Frangi,et al.  Model-based segmentation of cardiac and vascular images , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[9]  Milan Sonka,et al.  Computer-aided liver surgery planning: an augmented reality approach , 2003, SPIE Medical Imaging.

[10]  J. Scheele,et al.  [Anatomical and atypical liver resections]. , 2001, Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.

[11]  H. Shin,et al.  Individuelle Planung leberchirurgischer Eingriffe an einem virtuellen Modell der Leber und ihrer Leitstrukturen , 2000, Der Radiologe.

[12]  Jürgen Weese,et al.  Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images , 1997, CVRMed.

[13]  D Selle,et al.  Segmental anatomy of the liver: poor correlation with CT. , 1998, Radiology.

[14]  Bernhard Preim,et al.  Analysis of vasculature for liver surgical planning , 2002, IEEE Transactions on Medical Imaging.

[15]  Guido Gerig,et al.  3D Multi-scale line filter for segmentation and visualization of curvilinear structures in medical images , 1997, CVRMed.

[16]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[17]  Thomas Lehnert,et al.  Virtual planning of liver resections: image processing, visualization and volumetric evaluation , 1999, Int. J. Medical Informatics.

[18]  Guido Gerig,et al.  Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images , 1998, Medical Image Anal..

[19]  Milan Sonka,et al.  Quantitative analysis of three-dimensional tubular tree structures , 2003, SPIE Medical Imaging.

[20]  Gábor Székely,et al.  3D Voronoi Skeletons and Their Usage for the Characterization and Recognition of 3D Organ Shape , 1997, Comput. Vis. Image Underst..

[21]  Alexander Bornik,et al.  Efficient volume measurement using voxelization , 2003, SCCG '03.

[22]  Stephen R. Aylward,et al.  Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction , 2002, IEEE Transactions on Medical Imaging.

[23]  Milan Sonka,et al.  Quantitative Analysis of Intrathoracic Airway Trees: Methods and Validation , 2003, IPMI.

[24]  Hervé Delingette,et al.  Modélisation, déformation et reconnaissance d'objets tridimensionnels à l'aide de maillages simplexes , 1994 .

[25]  Alejandro F. Frangi,et al.  3D MRA coronary axis determination using a minimum cost path approach , 2002, Magnetic resonance in medicine.

[26]  Milan Sonka,et al.  Computer Aided Liver Surgery Planning Based on Augmented Reality Techniques , 2003, Bildverarbeitung für die Medizin.

[27]  Alejandro F. Frangi,et al.  Model-based quantitation of 3-D magnetic resonance angiographic images , 1999, IEEE Transactions on Medical Imaging.

[28]  Thomas Lehnert,et al.  Limits of Couinaud's Liver Segment Classification: A Quantitative Computer-Based Three-Dimensional Analysis , 2002, Journal of computer assisted tomography.

[29]  Johan Montagnat,et al.  Fully Automatic Anatomical, Pathological, and Functional Segmentation from CT Scans for Hepatic Surgery , 2000, Medical Imaging: Image Processing.

[30]  H. Peitgen,et al.  HepaVision2 — a software assistant for preoperative planning in living-related liver transplantation and oncologic liver surgery , 2002 .

[31]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[32]  Max A. Viergever,et al.  Multiscale vessel tracking , 2004, IEEE Transactions on Medical Imaging.

[33]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[34]  Hans-Peter Meinzer,et al.  Computerized planning of liver surgery - an overview , 2002, Comput. Graph..