Primal and Dual Generalized Eigenvalue Problems for Power Systems Small-Signal Stability Analysis

The paper presents a comprehensive study of small-signal stability analysis of power systems based on matrix pencils and the generalized eigenvalue problem. Both primal and dual formulations of the generalized eigenvalue problem are considered and solved through a variety of state-of-the-art solvers. The paper also discusses the impact on the performance of the solvers of two formulations of the equations modelling the power systems, namely, the explicit and semi-implicit form of differential-algebraic equations. The case study illustrates the theoretical aspects and numerical features of these formulations and solvers through two real-world systems, namely, a 1,479-bus model of the all-island Irish system, and a 21,177-bus model of the ENTSO-E network.

[1]  S. Haley,et al.  The generalized eigenproblem: pole-zero computation , 1988, Proceedings of the IEEE.

[2]  Reinhold Häb-Umbach,et al.  Blind Acoustic Beamforming Based on Generalized Eigenvalue Decomposition , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[3]  H. Yee,et al.  An efficient improvement of the AESOPS algorithm for power system eigenvalue calculation , 1994 .

[4]  C Rajakumar,et al.  Algebraic Eigenvalue Problem in Boundary Elements , 2004 .

[5]  Joost Rommes,et al.  Computing Rightmost Eigenvalues for Small-Signal Stability Assessment of Large-Scale Power Systems , 2010, IEEE Transactions on Power Systems.

[6]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[7]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[8]  George Mathew,et al.  A quasi-Newton adaptive algorithm for generalized symmetric eigenvalue problem , 1996, IEEE Trans. Signal Process..

[9]  V. Ajjarapu,et al.  Critical Eigenvalues Tracing for Power System Analysis via Continuation of Invariant Subspaces and Projected Arnoldi Method , 2007 .

[10]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[11]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[12]  Adam Semlyen,et al.  Improved methodologies for the calculation of critical eigenvalues in small signal stability analysis , 1996 .

[13]  Jack Dongarra,et al.  A Class of Hybrid LAPACK Algorithms for Multicore and GPU Architectures , 2011, 2011 Symposium on Application Accelerators in High-Performance Computing.

[14]  Zhansheng Duan,et al.  Adaptive Generalized Eigen-Pairs Extraction Algorithms and Their Convergence Analysis , 2016, IEEE Transactions on Signal Processing.

[15]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[16]  Ping Tak Peter Tang,et al.  Feast Eigensolver for Non-Hermitian Problems , 2015, SIAM J. Sci. Comput..

[17]  Federico Milano,et al.  Semi-implicit formulation of differential-algebraic equations for transient stability analysis , 2017, 2017 IEEE Power & Energy Society General Meeting.

[18]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[19]  A. Spence,et al.  Eigenvalues of Block Matrices Arising from Problems in Fluid Mechanics , 1994, SIAM J. Matrix Anal. Appl..

[20]  Rudolf A. Römer,et al.  On large‐scale diagonalization techniques for the Anderson model of localization , 2005, SIAM J. Sci. Comput..

[21]  L. Wang,et al.  Sequential computation of the complete eigensystem for the study zone in small signal stability analysis of large power systems , 1988 .

[22]  Karl Meerbergen,et al.  Implicitly restarted Arnoldi with purification for the shift-invert transformation , 1997, Math. Comput..

[23]  Isao Yamada,et al.  Adaptive Normalized Quasi-Newton Algorithms for Extraction of Generalized Eigen-Pairs and Their Convergence Analysis , 2013, IEEE Transactions on Signal Processing.

[24]  L. Wang,et al.  Application of sparse eigenvalue techniques to the small signal stability analysis of large power systems , 1989, Conference Papers Power Industry Computer Application Conference.

[25]  H. M. Antia Algebraic Eigenvalue Problem , 2012 .

[26]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[27]  JAMES DEMMEL,et al.  LAPACK: A portable linear algebra library for high-performance computers , 1990, Proceedings SUPERCOMPUTING '90.

[28]  Călin-Ioan Gheorghiu,et al.  Spectral Methods for Non-Standard Eigenvalue Problems , 2014 .

[29]  C. Y. Chung,et al.  A Combined TSA-SPA Algorithm for Computing Most Sensitive Eigenvalues in Large-Scale Power Systems , 2013, IEEE Transactions on Power Systems.

[30]  W. Liu,et al.  Calculation of Rightmost Eigenvalues in Power Systems Using the Jacobi–Davidson Method , 2006, IEEE Transactions on Power Systems.

[31]  A. Spence,et al.  Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .

[32]  Toshihisa Tanaka,et al.  Fast Generalized Eigenvector Tracking Based on the Power Method , 2009, IEEE Signal Processing Letters.

[33]  M.D. Zoltowski Solving the generalized eigenvalue problem with singular forms , 1987, Proceedings of the IEEE.

[34]  P. Kundur,et al.  Practical application of eigenvalue techniques in the analysis of power system dynamic stability problems , 1976, Canadian Electrical Engineering Journal.

[35]  Joost Rommes,et al.  Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax=λBx with singular B , 2007, Math. Comput..

[36]  Federico Milano,et al.  A python-based software tool for power system analysis , 2013, 2013 IEEE Power & Energy Society General Meeting.

[37]  Zhengchun Du,et al.  Computing Critical Eigenvalues of Power Systems Using Inexact Two-Sided Jacobi-Davidson , 2011, IEEE Transactions on Power Systems.

[38]  Călin-Ioan Gheorghiu,et al.  Spectral Methods for Non-Standard Eigenvalue Problems: Fluid and Structural Mechanics and Beyond , 2014 .

[39]  Matthias Winter,et al.  Mathematical Aspects of Pattern Formation in Biological Systems , 2013 .

[40]  Y. Hua,et al.  Generalized pencil-of-function method for extracting poles of an EM system from its transient response , 1989 .

[41]  C. Pottle,et al.  On the sparse matrix computation of critical frequencies , 1976 .