Swift/X-ray Telescope monitoring of the candidate supergiant fast X-ray transient IGR J16418-4532

We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418.4532, for which both orbital and spin periods are known (approx. 3.7d and approx. 1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 5 X 10(exp 16) g to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT

[1]  Alan M. Levine,et al.  AN EXTENDED AND MORE SENSITIVE SEARCH FOR PERIODICITIES IN ROSSI X-RAY TIMING EXPLORER/ALL-SKY MONITOR X-RAY LIGHT CURVES , 2010, 1009.0450.

[2]  Kazuhisa Mitsuda,et al.  Searches for millisecond pulsations on low-mass x-ray binaries , 1994 .

[3]  P. Ubertini,et al.  INTEGRAL observations of recurrent fast X-ray transient sources , 2005, astro-ph/0509018.

[4]  George W. Clark,et al.  The atmospheric structure of the O-type supergiant Krzeminski's star and the mass of its companion neutron star Centaurus X-3 , 1988 .

[5]  Walter H. G. Lewin,et al.  Accretion-driven stellar X-ray sources , 1983 .

[6]  R. Corbet,et al.  The three types of high-mass X-ray pulsator , 1986 .

[7]  P. Giommi,et al.  The Swift X-Ray Telescope , 1999 .

[8]  S. Campana,et al.  The supergiant fast X-ray transients XTE J1739-302 and IGR J08408-4503 in quiescence with XMM-Newton , 2010, 1004.2059.

[9]  Ian R. Stevens,et al.  Ionization effects in the radiative driving of stellar winds in massive X-ray binary systems. , 1989 .

[10]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[11]  William H. Press,et al.  Mechanism for inducing synchronous rotation and small eccentricity in close binary systems , 1975 .

[12]  Sébastien Lépine,et al.  DIRECT SPECTROSCOPIC OBSERVATIONS OF CLUMPING IN O-STAR WINDS , 2008, 0805.1864.

[13]  S. Vercellone,et al.  Two years of monitoring supergiant fast X-ray transients with Swift , 2010 .

[14]  J.J.M. in 't Zand,et al.  Chandra observation of the fast X-ray transient IGR J17544-2619: evidence for a neutron star? , 2005, astro-ph/0508240.

[15]  F. Martins,et al.  A new calibration of stellar parameters of Galactic O stars , 2005, astro-ph/0503346.

[16]  John I. Castor,et al.  Radiation-driven winds in Of stars. , 1975 .

[17]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[18]  S. Vercellone,et al.  Monitoring Supergiant Fast X-ray Transients with Swift. I. Behavior outside outbursts , 2008 .

[19]  S. Vercellone,et al.  Multiple flaring activity in the supergiant fast X‐ray transient IGR J08408−4503 observed with Swift , 2008, 0810.1180.

[20]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[21]  Ronnie Killough,et al.  The Swift Ultra-Violet/Optical Telescope , 2001 .

[22]  John A. Tomsick,et al.  Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. ⋆ I. The nature of the companion star , 2008, 0802.1774.

[23]  Milano,et al.  INTEGRAL results on Supergiant Fast X-ray Transients , 2010, 1006.3256.

[24]  K. L. Page,et al.  Swift/XRT monitoring of the Supergiant Fast X-ray Transient IGR J18483 0311 for an entire orbital period , 2010 .

[25]  P. Ubertini,et al.  Unveiling Supergiant Fast X-Ray Transient Sources with INTEGRAL , 2006, astro-ph/0603756.

[26]  D. N. Burrows,et al.  The first broad-band X-ray study of the Supergiant Fast X-ray Transient SAX J1818.6−1703 in outburst , 2009 .

[27]  L. Kaper,et al.  XMM-Newton X-ray spectroscopy of the high-mass X-ray binary 4U 1700-37 at low flux , 2004, astro-ph/0412021.

[28]  S. Mereghetti,et al.  The structure of blue supergiant winds and the accretion in supergiant high-mass X-ray binaries , 2009, 0906.3185.

[29]  Kazuhisa Mitsuda,et al.  ASCA observations of OAO 1657−415 and its dust-scattered X-ray halo , 2000 .

[30]  Ronald E. Taam,et al.  A model for the recurrent flares in EXO 2030 + 375 , 1988 .

[31]  Angela Bazzano,et al.  XMM-Newton and INTEGRAL observations of new absorbed supergiant high-mass X-ray binaries , 2006 .

[32]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[33]  Duane A. Liedahl,et al.  The X-ray Spectrum and Global Structure of the Stellar Wind in VELA X-1 , 1999 .

[34]  Goro Sato,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004 .

[35]  S. Vercellone,et al.  Monitoring supergiant fast X-ray transients with Swift: results from the first year , 2009, 0907.1289.

[36]  Frederick K. Lamb,et al.  A model for bursting X-ray sources - Time-dependent accretion by magnetic neutron stars and degenerate dwarfs , 1977 .

[37]  Luis A. Balona,et al.  Pulsation, rotation and mass loss in early-type stars , 1994 .

[38]  S. Vercellone,et al.  Monitoring Supergiant Fast X-Ray Transients with Swift. II. Rise to the Outburst in IGR J16479–4514 , 2008, 0805.2089.