Computing Fresnel integrals via modified trapezium rules

In this paper we propose methods for computing Fresnel integrals based on truncated trapezium rule approximations to integrals on the real line, these trapezium rules modified to take into account poles of the integrand near the real axis. Our starting point is a method for computation of the error function of complex argument due to Matta and Reichel (J Math Phys 34:298–307, 1956) and Hunter and Regan (Math Comp 26:539–541, 1972). We construct approximations which we prove are exponentially convergent as a function of $$N$$N, the number of quadrature points, obtaining explicit error bounds which show that accuracies of $$10^{-15}$$10-15 uniformly on the real line are achieved with $$N=12$$N=12, this confirmed by computations. The approximations we obtain are attractive, additionally, in that they maintain small relative errors for small and large argument, are analytic on the real axis (echoing the analyticity of the Fresnel integrals), and are straightforward to implement.

[1]  Bernard Bialecki,et al.  A modified sinc quadrature rule for functions with poles near the arc of integration , 1989 .

[2]  Otto Neall Strand A method for the computation of the error function of a complex variable , 1965 .

[3]  F. Matta,et al.  Uniform computation of the error function and other related functions , 1971 .

[4]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[5]  G. P. M. Poppe,et al.  Algorithm 680: evaluation of the complex error function , 1990, TOMS.

[6]  M. Mori A Method for Evaluation of the Error Function of Real and Complex Variable with High Relative Accuracy , 1983 .

[7]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[8]  J. Weideman Computations of the complex error function , 1994 .

[9]  AI,et al.  Analysing Ewald ’ s Method for the Evaluation of Green ’ s Functions for Periodic Media , 2010 .

[10]  A. Turing A method for the calculation of the zeta-function Universal Turing Machine , 2011 .

[11]  W. J. Cody,et al.  Chebyshev approximations for the Fresnel integrals , 1968 .

[12]  E. Crouch,et al.  The Evaluation of Integrals of the form ∫+∞ −∞ f(t)exp(−t 2) dt: Application to Logistic-Normal Models , 1990 .

[13]  W. Rudin Real and complex analysis , 1968 .

[14]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[15]  Kenneth R. Cramer,et al.  Complex Zeros of the Error Function and of the Complementary Error Function , 1973 .

[16]  G. P. M. Poppe,et al.  More efficient computation of the complex error function , 1990, TOMS.

[17]  Stephen Langdon,et al.  A high frequency boundary element method for scattering by a class of nonconvex obstacles , 2014, Numerische Mathematik.

[18]  S. Chandler-Wilde,et al.  Efficient calculation of the green function for acoustic propagation above a homogeneous impedance plane , 1995 .

[19]  C. Chiarella,et al.  On the evaluation of integrals related to the error function , 1968 .

[20]  M. A. Heald Rational approximations for the Fresnel integrals , 1985 .

[21]  D. B. Hunter The Numerical Evaluation of Definite Integrals Affected by Singularities Near the Interval of Integration , 1992 .

[22]  Mark A. Heald Corrigenda: “Rational approximations for the Fresnel integrals” [Math. Comp. 44 (1985), no. 170, 459–461; MR0777277 (86b:65017)] , 1986 .

[23]  H. E. Salzer Formulas for calculating the error function of a complex variable , 1951 .

[24]  D. B. Hunter,et al.  A Note on the Evaluation of the Complementary Error Function , 1972 .

[25]  E. T. Goodwin The evaluation of integrals of the form , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  T. Senior,et al.  Electromagnetic and Acoustic Scattering by Simple Shapes , 1969 .

[27]  Prem K. Kythe,et al.  Handbook of Computational Methods for Integration , 2004 .

[28]  Leslie Greengard,et al.  On the efficient representation of the half-space impedance Green’s function for the Helmholtz equation , 2011, 1109.6708.

[29]  Walter Gautschi,et al.  Efficient computation of the complex error function , 1970 .

[30]  Jean-Claude Nédélec,et al.  Computing numerically the Green’s function of the half-plane Helmholtz operator with impedance boundary conditions , 2007, Numerische Mathematik.