Computing Fresnel integrals via modified trapezium rules
暂无分享,去创建一个
[1] Bernard Bialecki,et al. A modified sinc quadrature rule for functions with poles near the arc of integration , 1989 .
[2] Otto Neall Strand. A method for the computation of the error function of a complex variable , 1965 .
[3] F. Matta,et al. Uniform computation of the error function and other related functions , 1971 .
[4] Thorsten Gerber,et al. Handbook Of Mathematical Functions , 2016 .
[5] G. P. M. Poppe,et al. Algorithm 680: evaluation of the complex error function , 1990, TOMS.
[6] M. Mori. A Method for Evaluation of the Error Function of Real and Complex Variable with High Relative Accuracy , 1983 .
[7] William H. Press,et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .
[8] J. Weideman. Computations of the complex error function , 1994 .
[9] AI,et al. Analysing Ewald ’ s Method for the Evaluation of Green ’ s Functions for Periodic Media , 2010 .
[10] A. Turing. A method for the calculation of the zeta-function Universal Turing Machine , 2011 .
[11] W. J. Cody,et al. Chebyshev approximations for the Fresnel integrals , 1968 .
[12] E. Crouch,et al. The Evaluation of Integrals of the form ∫+∞ −∞ f(t)exp(−t 2) dt: Application to Logistic-Normal Models , 1990 .
[13] W. Rudin. Real and complex analysis , 1968 .
[14] W. Rudin. Real and complex analysis, 3rd ed. , 1987 .
[15] Kenneth R. Cramer,et al. Complex Zeros of the Error Function and of the Complementary Error Function , 1973 .
[16] G. P. M. Poppe,et al. More efficient computation of the complex error function , 1990, TOMS.
[17] Stephen Langdon,et al. A high frequency boundary element method for scattering by a class of nonconvex obstacles , 2014, Numerische Mathematik.
[18] S. Chandler-Wilde,et al. Efficient calculation of the green function for acoustic propagation above a homogeneous impedance plane , 1995 .
[19] C. Chiarella,et al. On the evaluation of integrals related to the error function , 1968 .
[20] M. A. Heald. Rational approximations for the Fresnel integrals , 1985 .
[21] D. B. Hunter. The Numerical Evaluation of Definite Integrals Affected by Singularities Near the Interval of Integration , 1992 .
[22] Mark A. Heald. Corrigenda: “Rational approximations for the Fresnel integrals” [Math. Comp. 44 (1985), no. 170, 459–461; MR0777277 (86b:65017)] , 1986 .
[23] H. E. Salzer. Formulas for calculating the error function of a complex variable , 1951 .
[24] D. B. Hunter,et al. A Note on the Evaluation of the Complementary Error Function , 1972 .
[25] E. T. Goodwin. The evaluation of integrals of the form , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[26] T. Senior,et al. Electromagnetic and Acoustic Scattering by Simple Shapes , 1969 .
[27] Prem K. Kythe,et al. Handbook of Computational Methods for Integration , 2004 .
[28] Leslie Greengard,et al. On the efficient representation of the half-space impedance Green’s function for the Helmholtz equation , 2011, 1109.6708.
[29] Walter Gautschi,et al. Efficient computation of the complex error function , 1970 .
[30] Jean-Claude Nédélec,et al. Computing numerically the Green’s function of the half-plane Helmholtz operator with impedance boundary conditions , 2007, Numerische Mathematik.