Probing the anisotropic local Universe and beyond with SNe Ia data

The question of the transition to global isotropy from our anisotropic local universe is studied using the Union 2 catalogue of Type Ia supernovae (SNe Ia). We construct a ‘residual’ statistic sensitive to systematic shifts in their brightness in different directions and use this to search in different redshift slices for a preferred direction on the sky in which the SNe Ia are brighter or fainter relative to the standard Λcold dark matter (ΛCDM) cosmology. At low redshift (z 0.06) so this low-redshift bulk flow will systematically bias any reconstruction of the expansion history of the Universe. At higher redshifts z > 0.15 the agreement between the SNe Ia data and the ΛCDM model does improve, however, the sparseness and low quality of the data mean that the latter cannot be singled out as the preferred cosmological model.

[1]  Possibility of anisotropic curvature in cosmology , 2010, 1006.3321.

[2]  P. Ferreira,et al.  The Crossing Statistic: Dealing with Unknown Errors in the Dispersion of Type Ia Supernovae , 2010, 1006.2141.

[3]  I. Antoniou,et al.  Searching for a Cosmological Preferred Axis: Union2 Data Analysis and Comparison with Other Probes , 2010, 1007.4347.

[4]  M. Blomqvist,et al.  Constraining dark energy fluctuations with supernova correlations , 2010, 1006.4638.

[5]  T. D. Saini,et al.  Direction dependence in supernova data: constraining isotropy , 2010, 1005.2868.

[6]  H. Peiris,et al.  The cut-sky cosmic microwave background is not anomalous , 2010, 1004.2706.

[7]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[8]  T. Souradeep,et al.  Features in the primordial power spectrum? A frequentist analysis , 2009, 0912.2728.

[9]  D. Kocevski,et al.  A NEW MEASUREMENT OF THE BULK FLOW OF X-RAY LUMINOUS CLUSTERS OF GALAXIES , 2009, 0910.4958.

[10]  D. Lynden-Bell,et al.  Does the Universe accelerate equally in all directions , 2009, 0909.3861.

[11]  D. Holz,et al.  Measuring dark energy spatial inhomogeneity with supernova data , 2008, 0812.0376.

[12]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[13]  A. Shafieloo,et al.  Is cosmic acceleration slowing down , 2009, 0903.5141.

[14]  C. Tsagas Large-scale peculiar motions and cosmic acceleration , 2009, 0902.3232.

[15]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[16]  A. Shafieloo,et al.  Bright high z SnIa: A challenge for {lambda}CDM , 2008, 0811.2802.

[17]  M. Hudson,et al.  Consistently large cosmic flows on scales of 100 h−1 Mpc: a challenge for the standard ΛCDM cosmology , 2008, 0809.4041.

[18]  S. Colombi,et al.  COSMIC FLOW FROM TWO MICRON ALL-SKY REDSHIFT SURVEY: THE ORIGIN OF COSMIC MICROWAVE BACKGROUND DIPOLE AND IMPLICATIONS FOR ΛCDM COSMOLOGY , 2008, 0810.3658.

[19]  D. Kocevski,et al.  A Measurement of Large-Scale Peculiar Velocities of Clusters of Galaxies: Results and Cosmological Implications , 2008, 0809.3734.

[20]  A. Shafieloo,et al.  Two new diagnostics of dark energy , 2008, 0807.3548.

[21]  M. Blomqvist,et al.  Probing dark energy inhomogeneities with supernovae , 2008, 0806.0496.

[22]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[23]  T. Koivisto,et al.  Anisotropic dark energy: dynamics of the background and perturbations , 2008, 0801.3676.

[24]  S. Sarkar Is the evidence for dark energy secure? , 2007, 0710.5307.

[25]  T. Koivisto,et al.  Accelerating Cosmologies with an Anisotropic Equation of State , 2007, 0707.0279.

[26]  D. Schwarz,et al.  (An)isotropy of the Hubble diagram: comparing hemispheres , 2007, 0706.0165.

[27]  C Gordon,et al.  Cosmological constraints from type ia supernovae peculiar velocity measurements. , 2007, Physical review letters.

[28]  T. Laskar,et al.  Direction dependence and non-Gaussianity in the high-redshift supernova data , 2007, astro-ph/0701683.

[29]  D. Huterer,et al.  Uncorrelated universe: Statistical anisotropy and the vanishing angular correlation function in WMAP years 1 3 , 2006, astro-ph/0605135.

[30]  M. Kunz,et al.  Dipole of the luminosity distance: a direct measure of H(z). , 2006, Physical review letters.

[31]  P. Lilje,et al.  Asymmetries in the Cosmic Microwave Background Anisotropy Field , 2004 .

[32]  A. Lewis Cosmological Parameters and the WMAP Data , 2003, astro-ph/0310186.

[33]  Matias Zaldarriaga,et al.  Significance of the largest scale CMB fluctuations in WMAP , 2003, astro-ph/0307282.

[34]  P. Lilje,et al.  Asymmetries in the CMB anisotropy field , 2003, astro-ph/0307507.

[35]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[36]  Cambridge,et al.  Constraints on cosmological anisotropy out to z = 1 from Type Ia supernovae , 2000, astro-ph/0008041.

[37]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[38]  W. Press,et al.  Determining the Motion of the Local Group Using SN Ia Light Curve Shapes , 1994, astro-ph/9412017.

[39]  E. al.,et al.  Dipole Anisotropy in the COBE DMR First-Year Sky Maps , 1993, astro-ph/9312056.

[40]  A. Banday,et al.  Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps , 1993 .