Application of Machine Learning Methodologies for Predicting Corn Economic Optimal Nitrogen Rate

Qin, Zhisheng; Myers, D. Brenton; Ransom, Curtis J.; Kitchen, Newell R.; Liang, Sang-Zi; Camberato, James J.; Carter, Paul R.; Ferguson, Richard B.; Fernandez, Fabian G.; Franzen, David W.; Laboski, Carrie A. M.; Malone, Brad D.; Nafziger, Emerson D.; Sawyer, John E.; and Shanahan, John F., "Application of Machine Learning Methodologies for Predicting Corn Economic Optimal Nitrogen Rate" (2018). Agronomy & Horticulture -Faculty Publications. 1288. https://digitalcommons.unl.edu/agronomyfacpub/1288

[1]  James S. Schepers,et al.  Use of a virtual-reference concept to interpret active crop canopy sensor data , 2013, Precision Agriculture.

[2]  Earl D. Vories,et al.  Corn response to nitrogen is influenced by soil texture and weather , 2012 .

[3]  John E. Sawyer,et al.  Using Active Canopy Sensors to Quantify Corn Nitrogen Stress and Nitrogen Application Rate , 2010 .

[4]  F. Magdoff,et al.  A Soil Test for Nitrogen Availability to Corn , 1984 .

[5]  Rudolf Beran,et al.  Introduction to Efron (1979) Bootstrap Methods: Another Look at the Jackknife , 1992 .

[6]  John B. Solie,et al.  In‐Season Prediction of Potential Grain Yield in Winter Wheat Using Canopy Reflectance , 2001 .

[7]  John A. Lory,et al.  Calibrating Reflectance Measurements to Predict Optimal Sidedress Nitrogen Rate for Corn , 2009 .

[8]  David W. Franzen,et al.  A Public–Industry Partnership for Enhancing Corn Nitrogen Research and Datasets: Project Description, Methodology, and Outcomes , 2017 .

[9]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[10]  P. Scharf SOIL AND PLANT TESTS TO PREDICT OPTIMUM NITROGEN RATES FOR CORN* , 2001 .

[11]  Robert J. McQueen,et al.  Applying machine learning to agricultural data , 1995 .

[12]  Earl D. Vories,et al.  Ground‐Based Canopy Reflectance Sensing for Variable‐Rate Nitrogen Corn Fertilization , 2010 .

[13]  E. V. Lukina,et al.  NITROGEN FERTILIZATION OPTIMIZATION ALGORITHM BASED ON IN-SEASON ESTIMATES OF YIELD AND PLANT NITROGEN UPTAKE , 2001 .

[15]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[16]  W. Rawls,et al.  Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions , 2006 .

[17]  Juan Frausto-Solís,et al.  Predictive ability of machine learning methods for massive crop yield prediction , 2014 .

[18]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2001, Springer Series in Statistics.

[19]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[20]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[21]  Mansour Ebrahimi,et al.  Determining the Most Important Physiological and Agronomic Traits Contributing to Maize Grain Yield through Machine Learning Algorithms: A New Avenue in Intelligent Agriculture , 2014, PloS one.

[22]  A. Dobermann,et al.  Maize-N: A Decision Tool for Nitrogen Management in Maize , 2011 .

[23]  Spyros Fountas,et al.  Environmental and economic evaluation of N fertilizer rates in a maize crop in Italy: A spatial and temporal analysis using crop models , 2012 .

[24]  D. Beegle,et al.  Developing Nitrogen Fertilizer Recommendations for Corn Using an Active Sensor , 2008 .

[25]  G. Campbell,et al.  On the relationship between incoming solar radiation and daily maximum and minimum temperature , 1984 .

[26]  T. Roberts,et al.  Predicting Nitrogen Requirements for Maize with the Dark Green Color Index under Experimental Conditions , 2018 .

[27]  L. Plümer,et al.  Original paper: Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance , 2010 .

[28]  John E. Sawyer,et al.  Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation , 2016, Front. Plant Sci..

[29]  B. Dumont,et al.  Assessing and modeling economic and environmental impact of wheat nitrogen management in Belgium , 2016, Environ. Model. Softw..

[30]  Rebecca L. Whetton,et al.  Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy , 2016 .

[31]  Adam E. Dellinger,et al.  Nitrogen Recommendations for Corn: An On-The-Go Sensor Compared with Current Recommendation Methods , 2009 .

[32]  Jonathan P. Resop,et al.  Random Forests for Global and Regional Crop Yield Predictions , 2016, PloS one.

[33]  E. V. Lukina,et al.  Improving Nitrogen Use Efficiency in Cereal Grain Production with Optical Sensing and Variable Rate Application , 2002 .

[34]  John B. Solie,et al.  Adjusting Midseason Nitrogen Rate Using a Sensor-Based Optimization Algorithm to Increase Use Efficiency in Corn , 2008 .

[35]  Carlos Costa,et al.  Comparison of Crop‐Based Indicators with Soil Nitrate Test for Corn Nitrogen Requirement , 2005 .

[36]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[37]  Lior Rokach,et al.  Data Mining with Decision Trees - Theory and Applications , 2007, Series in Machine Perception and Artificial Intelligence.

[38]  John E. Sawyer,et al.  Strengths and Limitations of Nitrogen Rate Recommendations for Corn and Opportunities for Improvement , 2018 .

[39]  S. O. Prasher,et al.  Application of support vector machine technology for the estimation of crop biophysical parameters using aerial hyperspectral observations , 2008 .

[40]  John E. Sawyer,et al.  Concepts and Rationale for Regional Nitrogen Rate Guidelines for Corn , 2006 .

[41]  L. Joseph ADAPT-N: ADAPTIVE NITROGEN MANAGEMENT FOR MAIZE USING HIGH- RESOLUTION CLIMATE DATA AND MODEL SIMULATIONS , 2008 .