Ophthalmic Applications of Nanotechnology

Nanotechnology, the current catchphrase in applied technology, broadly refers to the design, fabrication, evaluation, or application of materials with at least one of the dimensions in the nanometer range. The enthusiasm for nanotechnology in biomedical sciences is due to several unique properties of nanomaterials. These unique properties include small size, large surface area, easy suspendability in liquids, access to cells and organelles, and tunable physicochemical characteristics including optical and magnetic properties (1). Several nanosystems are currently in use for biomedical applications including disease therapy and diagnosis. Some of these systems are described in Table 1. This chapter reviews nanosystems that can potentially be used for ophthalmic applications and provides some examples of nanotechnology applications in the areas of ophthalmic devices, diagnostics, and geneor drug-delivery systems.

[1]  E. Wickstrom,et al.  Single-wall carbon nanotube nanobomb agents for killing breast cancer cells , 2005 .

[2]  Stasia A. Anderson,et al.  Magnetic resonance contrast enhancement of neovasculature with αvβ3‐targeted nanoparticles , 2000 .

[3]  U. Kompella,et al.  Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. , 2006, Molecular vision.

[4]  M. Apuzzo,et al.  Toward the Emergence of Nanoneurosurgery: Part II—Nanomedicine: Diagnostics and Imaging at the Nanoscale Level , 2006, Neurosurgery.

[5]  Winfried M Amoaku,et al.  Artificial means for restoring vision , 2004, BMJ : British Medical Journal.

[6]  P. Maincent,et al.  [Value of the new drug carriers in ophthalmology: liposomes and nanoparticles]. , 1990, Journal francais d'ophtalmologie.

[7]  Antony D'Emanuele,et al.  Dendrimer-drug interactions. , 2005, Advanced drug delivery reviews.

[8]  Chikashi Nakamura,et al.  Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. , 2005, Biosensors & bioelectronics.

[9]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[10]  M. Goldberg,et al.  Novel ophthalmic therapeutic modalities based on noninvasive light-targeted drug delivery to the posterior pole of the eye. , 2001, Advanced drug delivery reviews.

[11]  R. Duncan,et al.  Dendrimer biocompatibility and toxicity. , 2005, Advanced drug delivery reviews.

[12]  M. Alonso,et al.  The potential of chitosan in ocular drug delivery , 2003, The Journal of pharmacy and pharmacology.

[13]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  P Kim,et al.  ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[15]  U. Kompella,et al.  Size‐dependent disposition of nanoparticles and microparticles following subconjunctival administration , 2005, The Journal of pharmacy and pharmacology.

[16]  H. Fishman,et al.  Carbon Nanotubes as Microelectrodes for a Retinal Prosthesis , 2003 .

[17]  J. Tour,et al.  Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. , 2006, Biomacromolecules.

[18]  H. Cohen,et al.  Nanoparticles for gene delivery to retinal pigment epithelial cells. , 2005, Molecular vision.

[19]  Robert Gurny,et al.  Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. , 2003, Investigative ophthalmology & visual science.

[20]  R. Gurny Preliminary study of prolonged acting drug delivery system for the treatment of glaucoma. , 1981, Pharmaceutica acta Helvetiae.

[21]  U. Kompella,et al.  Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. , 2005, European journal of pharmacology.

[22]  I. Pepić,et al.  Micellar solutions of triblock copolymer surfactants with pilocarpine. , 2004, International journal of pharmaceutics.

[23]  Mauro Ferrari,et al.  Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[24]  H Honda,et al.  Development of a target-directed magnetic resonance contrast agent using monoclonal antibody-conjugated magnetic particles. , 1996, Noshuyo byori = Brain tumor pathology.

[25]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[26]  J. Weiland,et al.  Nanobiolistic delivery of indicators to the living mouse retina , 2006, Journal of Neuroscience Methods.

[27]  C. Barnstable,et al.  A PEDF N-terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. , 2006, Experimental eye research.

[28]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[29]  Mansoor Amiji,et al.  Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles. , 2005, Journal of pharmaceutical sciences.

[30]  Leon Hirsch,et al.  Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer , 2004, Technology in cancer research & treatment.

[31]  T J Brady,et al.  Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. , 1987, Radiology.

[32]  J. Irache,et al.  Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[33]  Klaas Nicolay,et al.  Lipid‐based nanoparticles for contrast‐enhanced MRI and molecular imaging , 2006, NMR in biomedicine.

[34]  Andreas Zimmer,et al.  Microspheres and nanoparticles used in ocular delivery systems , 1995 .

[35]  Alexander V Kabanov,et al.  Pluronic block copolymers for overcoming drug resistance in cancer. , 2002, Advanced drug delivery reviews.

[36]  R Weissleder,et al.  Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. , 1988, Radiology.

[37]  M. Apuzzo,et al.  Toward the Emergence of Nanoneurosurgery: Part I—Progress in Nanoscience, Nanotechnology, and the Comprehension of Events in the Mesoscale Realm , 2005, Neurosurgery.

[38]  U. Kompella,et al.  Preparation of drug delivery systems using supercritical fluid technology. , 2001, Critical reviews in therapeutic drug carrier systems.

[39]  M. Goldbaum,et al.  Macugen (Pegaptanib Sodium), a Novel Ocular Therapeutic That Targets Vascular Endothelial Growth Factor (VEGF) , 2006, International ophthalmology clinics.

[40]  Chikashi Nakamura,et al.  Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. , 2005, Nano letters.

[41]  U. Kompella,et al.  Periocular routes for retinal drug delivery , 2004, Expert opinion on drug delivery.

[42]  G. Weinstein,et al.  Ocular disposition of nanoencapsulated acyclovir and ganciclovir via intravitreal injection in rabbit's eye , 1996 .

[43]  Nan Wang,et al.  Construction, gene delivery, and expression of DNA tethered nanoparticles. , 2006, Molecular vision.

[44]  Robert Langer,et al.  Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip , 2004, Journal of biomaterials science. Polymer edition.

[45]  P. Jani,et al.  Nanoparticles sustain expression of Flt intraceptors in the cornea and inhibit injury-induced corneal angiogenesis. , 2007, Investigative ophthalmology & visual science.

[46]  T. Hirano,et al.  Quantum dots in bio-imaging: Revolution by the small. , 2005, Biochemical and biophysical research communications.

[47]  P. Maincent,et al.  Poly(ε-Caprolactone) Nanocapsules in Carteolol Ophthalmic Delivery , 1993, Pharmaceutical Research.

[48]  Uday B Kompella,et al.  Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. , 2003, Investigative ophthalmology & visual science.

[49]  Ruth Duncan,et al.  Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation , 2004, Nature Biotechnology.

[50]  A. Kichler Gene transfer with modified polyethylenimines , 2004, The journal of gene medicine.

[51]  D. Kerr,et al.  Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer , 2004, British Journal of Cancer.

[52]  J. Kreuter,et al.  Nanoparticles as drug carriers in ophthalmology. , 1987, Pharmaceutica acta Helvetiae.

[53]  I. Toth,et al.  Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity , 2005, Gene Therapy.

[54]  Joseph D. Gong,et al.  Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. , 2006, Journal of the American Chemical Society.

[55]  Juergen Siepmann,et al.  Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[56]  U. Kompella,et al.  Preparation of Large Porous Deslorelin-PLGA Microparticles with Reduced Residual Solvent and Cellular Uptake Using a Supercritical Carbon Dioxide Process , 2004, Pharmaceutical Research.

[57]  U. Kompella,et al.  Nanoparticles for Ocular Drug Delivery , 2006 .

[58]  Hui Hu,et al.  Bone cell proliferation on carbon nanotubes. , 2006, Nano letters.

[59]  C. B. Roberts,et al.  Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology , 2008, AAPS PharmSciTech.

[60]  J. Irache,et al.  Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. , 2002, Biomaterials.

[61]  M. Alonso,et al.  Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. , 2001, International journal of pharmaceutics.

[62]  Ram B. Gupta,et al.  Fundamentals of Drug Nanoparticles , 2006 .

[63]  R. Pignatello,et al.  Preparation and characterization of Eudragit Retard nanosuspensions for the ocular delivery of cloricromene , 2006, AAPS PharmSciTech.

[64]  Robert Langer,et al.  Application of Micro- and Nano-Electromechanical Devices to Drug Delivery , 2006, Pharmaceutical Research.

[65]  K. Langer,et al.  Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery: Part III: Evaluation as drug delivery system for ophthalmic applications , 1997 .

[66]  A. Schätzlein,et al.  Dendrimers in gene delivery. , 2005, Advanced drug delivery reviews.

[67]  Younan Xia,et al.  Gold nanocages as contrast agents for spectroscopic optical coherence tomography. , 2005, Optics letters.

[68]  R. Cavalli,et al.  Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. , 2002, International journal of pharmaceutics.

[69]  R. Haddon,et al.  Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. , 2005, The journal of physical chemistry. B.

[70]  Uday B. Kompella,et al.  Nanoparticle technology for drug delivery , 2006 .

[71]  Walter H Backes,et al.  Evaluation of Gd(III)DTPA‐terminated poly(propylene imine) dendrimers as contrast agents for MR imaging , 2006, NMR in biomedicine.

[72]  R. Chandra,et al.  Novel polyallylamine-dextran sulfate-DNA nanoplexes: highly efficient non-viral vector for gene delivery. , 2006, International journal of pharmaceutics.

[73]  P. N. Prasad,et al.  Brimonidine formulation in polyacrylic acid nanoparticles for ophthalmic delivery , 2003 .

[74]  U. Kompella,et al.  Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. , 2006, Investigative ophthalmology & visual science.