Photon Pairs from Resonant Metasurfaces

All-dielectric optical metasurfaces are a workhorse in nano-optics, because of both their ability to manipulate light in different degrees of freedom and their excellent performance at light frequency conversion. Here, we demonstrate first-time generation of photon pairs via spontaneous parametric-down conversion in lithium niobate quantum optical metasurfaces with electric and magnetic Mie-like resonances at various wavelengths. By engineering the quantum optical metasurface, we tailor the photon-pair spectrum in a controlled way. Within a narrow bandwidth around the resonance, the rate of pair production is enhanced up to 2 orders of magnitude, compared to an unpatterned film of the same thickness and material. These results enable flat-optics sources of entangled photons—a new promising platform for quantum optics experiments.

[1]  Wei Wu,et al.  Nonlinear Lithium Niobate Metasurfaces for Second Harmonic Generation , 2021, Laser & Photonics Reviews.

[2]  D. Neshev,et al.  Steering and Encoding the Polarization of the Second Harmonic in the Visible with a Monolithic LiNbO3 Metasurface , 2021, ACS photonics.

[3]  A. Anthur,et al.  Continuous Wave Second Harmonic Generation Enabled by Quasi-Bound-States in the Continuum on Gallium Phosphide Metasurfaces. , 2020, Nano letters.

[4]  F. Setzpfandt,et al.  Second-Harmonic Generation in Resonant Nonlinear Metasurfaces Based on Lithium Niobate. , 2020, Nano letters.

[5]  G. Agarwal,et al.  Metasurfaces for quantum photonics , 2020, Nature Photonics.

[6]  Federico Capasso,et al.  High-purity orbital angular momentum states from a visible metasurface laser , 2020, 2021 Conference on Lasers and Electro-Optics (CLEO).

[7]  Y. Kivshar,et al.  Nonlinear optics with resonant metasurfaces , 2020, MRS Bulletin.

[8]  M. Chekhova,et al.  Idealized Einstein-Podolsky-Rosen states from non–phase-matched parametric down-conversion , 2019, Physical Review A.

[9]  F. Setzpfandt,et al.  Resonant dielectric metasurfaces: active tuning and nonlinear effects , 2019, Journal of Physics D: Applied Physics.

[10]  D. Neshev,et al.  Second-Harmonic Generation in Monolithic Lithium Niobate Metasurfaces , 2019, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[11]  Y. Kivshar,et al.  Nonlinear Metasurfaces Governed by Bound States in the Continuum , 2019, ACS Photonics.

[12]  V. Buscaglia,et al.  Lithium Niobate Nanocubes as Linear and Nonlinear Ultraviolet Mie Resonators , 2019, ACS Photonics.

[13]  F. Setzpfandt,et al.  Submicrometer Nanostructure-Based RGB Filters for CMOS Image Sensors , 2018, ACS Photonics.

[14]  S. Xiao,et al.  Nonlinear Holographic All-Dielectric Metasurfaces. , 2018, Nano letters.

[15]  Huiying Hu,et al.  Lithium Niobate Metasurfaces , 2018, Laser & Photonics Reviews.

[16]  George T. Wang,et al.  Light-Emitting Metasurfaces: Simultaneous Control of Spontaneous Emission and Far-Field Radiation. , 2018, Nano letters.

[17]  M. Sinclair,et al.  Enhanced Second-Harmonic Generation Using Broken Symmetry III-V Semiconductor Fano Metasurfaces , 2018 .

[18]  Federico Capasso,et al.  Metalenses: Versatile multifunctional photonic components , 2017, Science.

[19]  M. Sinclair,et al.  An optical metamixer , 2017, 1711.00090.

[20]  A. Alú,et al.  Nonlinear metasurfaces: a paradigm shift in nonlinear optics , 2017, 1706.07563.

[21]  Amos Martinez,et al.  Photon‐Pair Generation with a 100 nm Thick Carbon Nanotube Film , 2017, Advanced materials.

[22]  Arnan Mitchell,et al.  Direct characterization of a nonlinear photonic circuit’s wave function with laser light , 2017, Light: Science & Applications.

[23]  M. Sinclair,et al.  Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces. , 2016, Nano letters.

[24]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[25]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[26]  P. Grahn,et al.  Electromagnetic multipole theory for optical nanomaterials , 2012, 1206.0530.

[27]  T. Kondo,et al.  Redetemination of the absolute scale of the second-order nonlinear optical coefficients , 1994, Proceedings of 5th European Quantum Electronics Conference.

[28]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.