Exploring the modular nature of riboswitches and RNA thermometers

Abstract Natural regulatory RNAs like riboswitches and RNA thermometers (RNAT) have considerable potential in synthetic biology. They are located in the 5′ untranslated region (UTR) of bacterial mRNAs and sense small molecules or changes in temperature, respectively. While riboswitches act on the level of transcription, translation or mRNA stability, all currently known RNATs regulate translation initiation. In this study, we explored the modularity of riboswitches and RNATs and obtained regulatory devices with novel functionalities. In a first approach, we established three riboswitch-RNAT systems conferring dual regulation of transcription and translation depending on the two triggers ligand binding and temperature sensing. These consecutive fusions control gene expression in vivo and can even orchestrate complex cellular behavior. In another approach, we designed two temperature-controlled riboswitches by the integration of an RNAT into a riboswitch aptamer domain. These ‘thermoswitches’ respond to the cognate ligand at low temperatures and are turned into a continuous on-state by a temperature upshift. They represent the first RNATs taking control of transcription. Overall, this study demonstrates that riboswitches and RNATs are ideal for engineering synthetic RNA regulators due to their modular behavior.

[1]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[2]  A. Serganov,et al.  A Decade of Riboswitches , 2013, Cell.

[3]  Markus Wieland,et al.  Improved aptazyme design and in vivo screening enable riboswitching in bacteria. , 2008, Angewandte Chemie.

[4]  F. Narberhaus,et al.  Molecular basis for temperature sensing by an RNA thermometer , 2006, The EMBO journal.

[5]  F. Narberhaus,et al.  A tricistronic heat shock operon is important for stress tolerance of Pseudomonas putida and conserved in many environmental bacteria. , 2014, Environmental microbiology.

[6]  E. Wagner,et al.  Antisense RNA‐mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing: an in vitro study of plasmid pIP501. , 1994, The EMBO journal.

[7]  Torsten Waldminghaus,et al.  Generation of synthetic RNA-based thermosensors , 2008, Biological chemistry.

[8]  A. Ferré-D’Amaré,et al.  Thermodynamic analysis of ligand binding and ligand binding-induced tertiary structure formation by the thiamine pyrophosphate riboswitch. , 2010, RNA.

[9]  H. Schwalbe,et al.  Translation on demand by a simple RNA-based thermosensor , 2010, Nucleic acids research.

[10]  Andrea Haller,et al.  Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution , 2013, Proceedings of the National Academy of Sciences.

[11]  F. Narberhaus,et al.  Thermozymes: Synthetic RNA thermometers based on ribozyme activity. , 2013, RNA biology.

[12]  Harald Schwalbe,et al.  Interplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch , 2006, Nucleic acids research.

[13]  M. Gelfand,et al.  Comparative Genomics of Thiamin Biosynthesis in Procaryotes , 2002, The Journal of Biological Chemistry.

[14]  R. Breaker,et al.  Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. , 2007, RNA.

[15]  R. Montange,et al.  Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine , 2004, Nature.

[16]  H. Hennecke,et al.  A mRNA-based thermosensor controls expression of rhizobial heat shock genes. , 2001, Nucleic acids research.

[17]  P. Stadler,et al.  De novo design of a synthetic riboswitch that regulates transcription termination , 2012, Nucleic acids research.

[18]  R. Batey,et al.  B12 cofactors directly stabilize an mRNA regulatory switch , 2012, Nature.

[19]  Y. Kyōgoku,et al.  Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. , 1999, Genes & development.

[20]  Beatrix Suess,et al.  Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast , 2007, Nucleic acids research.

[21]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[22]  Torsten Waldminghaus,et al.  RNA thermometers are common in α- and γ-proteobacteria , 2005 .

[23]  F. Narberhaus,et al.  Bacterial RNA thermometers: molecular zippers and switches , 2012, Nature Reviews Microbiology.

[24]  R. Pridmore New and versatile cloning vectors with kanamycin-resistance marker. , 1987, Gene.

[25]  H. Wolf‐Watz,et al.  Concerted Actions of a Thermo-labile Regulator and a Unique Intergenic RNA Thermosensor Control Yersinia Virulence , 2012, PLoS pathogens.

[26]  J. Messing,et al.  Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. , 1983, Gene.

[27]  Harald Schwalbe,et al.  Modulation of the stability of the Salmonella fourU-type RNA thermometer , 2011, Nucleic acids research.

[28]  Harald Schwalbe,et al.  Three-state mechanism couples ligand and temperature sensing in riboswitches , 2013, Nature.

[29]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[30]  Torsten Waldminghaus,et al.  FourU: a novel type of RNA thermometer in Salmonella , 2007, Molecular microbiology.

[31]  Wei Huang,et al.  Linking aptamer‐ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design , 2015, Wiley interdisciplinary reviews. RNA.

[32]  Torsten Waldminghaus,et al.  RNA thermometers are common in alpha- and gamma-proteobacteria. , 2005, Biological chemistry.

[33]  Tae Seok Moon,et al.  De novo design of heat-repressible RNA thermosensors in E. coli , 2015, Nucleic acids research.

[34]  J. Miranda-Ríos,et al.  A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[36]  J. Gallivan,et al.  Guiding bacteria with small molecules and RNA. , 2007, Journal of the American Chemical Society.

[37]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Joe C. Liang,et al.  Engineering biological systems with synthetic RNA molecules. , 2011, Molecular cell.

[39]  Markus Wieland,et al.  Artificial ribozyme switches containing natural riboswitch aptamer domains. , 2009, Angewandte Chemie.

[40]  H. Schwalbe,et al.  Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution , 2010, Nucleic acids research.

[41]  G. Varani,et al.  The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. , 2000, EMBO reports.

[42]  Juliane Neupert,et al.  Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli , 2008, Nucleic acids research.

[43]  A. Wachter Gene regulation by structured mRNA elements. , 2014, Trends in genetics : TIG.

[44]  Jeffrey E. Barrick,et al.  Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions , 2006, Science.

[45]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[46]  T. Henkin,et al.  The L box regulon: Lysine sensing by leader RNAs of bacterial lysine biosynthesis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  F. Narberhaus,et al.  Temperature-driven differential gene expression by RNA thermosensors. , 2014, Biochimica et biophysica acta.

[48]  Nobuo Yamashita,et al.  Thiamine‐regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch‐like domain in the 5′‐UTR , 2003, FEBS letters.

[49]  P. Burkholder,et al.  Induced biochemical mutations in Bacillus subtilis. , 1947, American journal of botany.

[50]  R. Breaker,et al.  Gene regulation by riboswitches , 2004, Nature Reviews Molecular Cell Biology.

[51]  Eric Westhof,et al.  The non-Watson-Crick base pairs and their associated isostericity matrices. , 2002, Nucleic acids research.

[52]  Margaret S. Ebert,et al.  An mRNA structure in bacteria that controls gene expression by binding lysine. , 2003, Genes & development.

[53]  R. Breaker,et al.  A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria. , 2009, RNA.

[54]  R. Breaker,et al.  Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. , 2005, Chemistry & biology.

[55]  R. Batey,et al.  Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. , 2013, ACS synthetic biology.

[56]  F. Narberhaus,et al.  Thermogenetic tools to monitor temperature-dependent gene expression in bacteria. , 2012, Journal of biotechnology.

[57]  A. Ferré-D’Amaré,et al.  Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. , 2006, Structure.

[58]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[59]  Torsten Waldminghaus,et al.  Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon. , 2011, Microbiology.

[60]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[61]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[62]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[63]  A. Bren,et al.  How Signals Are Heard during Bacterial Chemotaxis: Protein-Protein Interactions in Sensory Signal Propagation , 2000, Journal of bacteriology.

[64]  Namhee Kim,et al.  Analysis of Riboswitch Structure and Function by an Energy Landscape Framework , 2009 .

[65]  K. Klose,et al.  RNA thermometer controls temperature-dependent virulence factor expression in Vibrio cholerae , 2014, Proceedings of the National Academy of Sciences.

[66]  C. Berens,et al.  A tetracycline-binding RNA aptamer. , 2001, Bioorganic & medicinal chemistry.

[67]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[68]  A. Pardi,et al.  High-resolution molecular discrimination by RNA. , 1994, Science.

[69]  M. Gelfand,et al.  Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? , 2003, Nucleic acids research.