Long-Term Span Traffic Prediction Model Based on STL Decomposition and LSTM

With the increasing complexity of the network, the current network traffic has strong nonlinearity and burstiness. Therefore, the traditional traffic prediction model is no longer applicable. The neural network model, especially the LSTM, can well fit the nonlinearity of time-series data and preserve the information memory of the past. However, as for the periodicity of long-term span network traffic data, the neural network model does not perform well. Based on this, this paper proposes LTS-TP (Long-Term Span Traffic Prediction model), a network traffic prediction model, to solve the problem. First, the model decomposes the collected network traffic data using the improved STL decomposition algorithm to preserve the seasonal component. Then, the trend component and the remainder component are input into the Seq2Seq model based on the LSTM added with the improved attention mechanism for prediction. Finally, the predicted value of the output is added to the seasonal component, and the final network traffic prediction value is obtained. In the simulation part, this paper uses the MAWI public data set to test the proposed network traffic prediction model and compared performance with other models. The results show that the network traffic prediction model proposed in this paper has a good predictive effect on long-term span network traffic data.

[1]  K. P. Soman,et al.  Applying deep learning approaches for network traffic prediction , 2017, 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[2]  Ying Huang,et al.  A Network Traffic Prediction Model Based on Quantum Inspired PSO and Neural Network , 2013, 2013 Sixth International Symposium on Computational Intelligence and Design.

[3]  Xinlei Chen,et al.  DeepTP: An End-to-End Neural Network for Mobile Cellular Traffic Prediction , 2018, IEEE Network.

[4]  Shanwen Zhang,et al.  Modified Elman neural network and its application to network traffic prediction , 2012, 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems.

[5]  Pan Wang,et al.  SFARIMA: A New Network Traffic Prediction Algorithm , 2009, 2009 First International Conference on Information Science and Engineering.

[6]  Wang Peng,et al.  Network Traffic Prediction Based on Improved BP Wavelet Neural Network , 2008, 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing.

[7]  Fu Xiao,et al.  Network Traffic Prediction Method Based on Improved Echo State Network , 2018, IEEE Access.