Rule-Based Classification

5.

[1]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[2]  Yoram Singer,et al.  Using and combining predictors that specialize , 1997, STOC '97.

[3]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[4]  Xiaoli Li,et al.  Learning to Classify Texts Using Positive and Unlabeled Data , 2003, IJCAI.

[5]  See-Kiong Ng,et al.  Learning to Identify Unexpected Instances in the Test Set , 2007, IJCAI.

[6]  Roberto J. Bayardo,et al.  Mining the most interesting rules , 1999, KDD '99.

[7]  Sholom M. Weiss,et al.  Optimized rule induction , 1993, IEEE Expert.

[8]  Balaji Padmanabhan,et al.  Small is beautiful: discovering the minimal set of unexpected patterns , 2000, KDD '00.

[9]  Michael J. Pazzani,et al.  A Knowledge-intensive Approach to Learning Relational Concepts , 1991, ML.

[10]  Philip S. Yu,et al.  Building text classifiers using positive and unlabeled examples , 2003, Third IEEE International Conference on Data Mining.

[11]  Heikki Mannila,et al.  Finding interesting rules from large sets of discovered association rules , 1994, CIKM '94.

[12]  Wynne Hsu,et al.  Pruning and summarizing the discovered associations , 1999, KDD '99.

[13]  Johannes Fürnkranz,et al.  Incremental Reduced Error Pruning , 1994, ICML.

[14]  Wynne Hsu,et al.  Integrating Classification and Association Rule Mining , 1998, KDD.

[15]  R. Rivest Learning Decision Lists , 1987, Machine Learning.

[16]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[17]  See-Kiong Ng,et al.  Negative Training Data Can be Harmful to Text Classification , 2010, EMNLP.

[18]  Anthony K. H. Tung,et al.  FARMER: finding interesting rule groups in microarray datasets , 2004, SIGMOD '04.

[19]  Philip S. Yu,et al.  Text Classification by Labeling Words , 2004, AAAI.

[20]  Salvatore J. Stolfo,et al.  Adaptive Intrusion Detection: A Data Mining Approach , 2000, Artificial Intelligence Review.

[21]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[22]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[23]  Philip S. Yu,et al.  Positive Unlabeled Learning for Data Stream Classification , 2009, SDM.

[24]  David E. Johnson,et al.  Maximizing Text-Mining Performance , 1999 .

[25]  Anthony K. H. Tung,et al.  Mining top-K covering rule groups for gene expression data , 2005, SIGMOD '05.

[26]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[27]  David D. Lewis,et al.  Heterogeneous Uncertainty Sampling for Supervised Learning , 1994, ICML.

[28]  Nada Lavrac,et al.  The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains , 1986, AAAI.

[29]  George Karypis,et al.  Using conjunction of attribute values for classification , 2002, CIKM '02.

[30]  Chee Keong Kwoh,et al.  Positive-unlabeled learning for disease gene identification , 2012, Bioinform..

[31]  Kotagiri Ramamohanarao,et al.  DeEPs: A New Instance-Based Lazy Discovery and Classification System , 2004, Machine Learning.

[32]  Bing Liu,et al.  Identifying comparative sentences in text documents , 2006, SIGIR.

[33]  Xiaoli Li,et al.  Multi-resolution independent component analysis for high-performance tumor classification and biomarker discovery , 2011, BMC Bioinformatics.

[34]  Tao Luo,et al.  Effective personalization based on association rule discovery from web usage data , 2001, WIDM '01.

[35]  Charu C. Aggarwal,et al.  XRules: an effective structural classifier for XML data , 2003, KDD '03.

[36]  Peter Clark,et al.  The CN2 induction algorithm , 2004, Machine Learning.

[37]  Mohammed J. Zaki,et al.  Mining features for sequence classification , 1999, KDD '99.

[38]  Jiawei Han,et al.  CPAR: Classification based on Predictive Association Rules , 2003, SDM.

[39]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[40]  Philip S. Yu,et al.  Partially Supervised Classification of Text Documents , 2002, ICML.

[41]  Dimitris Meretakis,et al.  Extending naïve Bayes classifiers using long itemsets , 1999, KDD '99.

[42]  Sergio A. Alvarez,et al.  Efficient Adaptive-Support Association Rule Mining for Recommender Systems , 2004, Data Mining and Knowledge Discovery.

[43]  William W. Cohen Learning Trees and Rules with Set-Valued Features , 1996, AAAI/IAAI, Vol. 1.

[44]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[45]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[46]  Bing Liu,et al.  Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data , 2006, Data-Centric Systems and Applications.

[47]  Ke Wang,et al.  Growing decision trees on support-less association rules , 2000, KDD '00.

[48]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[49]  Abraham Silberschatz,et al.  What Makes Patterns Interesting in Knowledge Discovery Systems , 1996, IEEE Trans. Knowl. Data Eng..

[50]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[51]  Heikki Mannila,et al.  Discovering Generalized Episodes Using Minimal Occurrences , 1996, KDD.

[52]  Tong Zhang,et al.  A decision-tree-based symbolic rule induction system for text categorization , 2002, IBM Syst. J..

[53]  Michael J. Pazzani,et al.  An Investigation of Noise-Tolerant Relational Concept Learning Algorithms , 1991, ML.

[54]  Ryszard S. Michalski,et al.  On the Quasi-Minimal Solution of the General Covering Problem , 1969 .

[55]  Pat Morin,et al.  Output-Sensitive Algorithms for Computing Nearest-Neighbour Decision Boundaries , 2005, Discret. Comput. Geom..

[56]  Ke Wang,et al.  Building Association-Rule Based Sequential Classifiers for Web-Document Prediction , 2004, Data Mining and Knowledge Discovery.

[57]  Ron Kohavi,et al.  Real world performance of association rule algorithms , 2001, KDD '01.

[58]  Arthur B. Maccabe,et al.  The architecture of a network level intrusion detection system , 1990 .

[59]  William W. Cohen Learning Rules that Classify E-Mail , 1996 .

[60]  Das Amrita,et al.  Mining Association Rules between Sets of Items in Large Databases , 2013 .

[61]  See-Kiong Ng,et al.  Systematic gene function prediction from gene expression data by using a fuzzy nearest-cluster method , 2006, BMC Bioinformatics.

[62]  Weimin Xiao,et al.  Rule interestingness analysis using OLAP operations , 2006, KDD '06.

[63]  Bogdan E. Popescu,et al.  PREDICTIVE LEARNING VIA RULE ENSEMBLES , 2008, 0811.1679.

[64]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[65]  Jian Pei,et al.  CMAR: accurate and efficient classification based on multiple class-association rules , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[66]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[67]  Sholom M. Weiss,et al.  Automated learning of decision rules for text categorization , 1994, TOIS.

[68]  J. R. Quinlan Learning Logical Definitions from Relations , 1990 .

[69]  Salvatore J. Stolfo,et al.  Data Mining Approaches for Intrusion Detection , 1998, USENIX Security Symposium.

[70]  Osmar R. Zaïane,et al.  Text document categorization by term association , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[71]  Yoram Singer,et al.  Context-sensitive learning methods for text categorization , 1996, SIGIR '96.