Stochastic weather generators: an overview of weather type models

A recurrent issue encountered in environmental, ecological or agricultural impact studies in which climate is an important driving force is to provide fast and realistic simulations of atmospheric variables such as temperature, precipitation and wind at a few specific locations, at daily or hourly temporal scales. Spatio-temporal dynamics and correlation structures among the variables of interest, as well as weather persistence and natural variability have to be reproduced accurately in a distributional sense. This quest leads to a large variety of so-called stochastic weather generators (WGs) in the literature. Here, we provide an up-to-date overview of weather type WG models.Weather types classically represent daily characteristics of the relevant atmospheric information at hand. There are many ways to build such weather states, either hidden or observed, and to infer their properties. This overview should help statisticians as well as meteorologists and climate product users to understand the probabilistic concepts and models behind weather type WGs, and to identify their advantages and limits. Resume : Pour realiser des etudes d’impact dans lesquelles le climat est un parametre d’entree important, un probleme frequemment rencontre consiste a produire des series temporelles de variables climatiques telles que temperatures, precipitation, vent ou humidite relative, en plusieurs sites simultanement, au pas de temps journalier et parfois horaire. Ces series doivent etre faciles a generer. Elles doivent aussi etre realistes en ce sens que les distributions des statistiques liees a la dynamique spatio-temporelle, telles que les correlation entre variables, la persistence temporelle et les differentes sources de variabilite doivent etre correctement reproduites. De nombreux generateurs stochastiques de conditions meteorologiques ont ete proposes dans ce but. Dans cet article, nous proposons de passer en revue la classe particuliere des generateurs stochastiques a base de types de temps. En regle generale, un type de temps est une caracterisation grossiere des conditions atmospheriques journalieres. Il existe de nombreuses facons de definir les types de temps, qu’ils soient observes ou caches dans une structure latente, et d’en inferer leur proprietes. Cette revue a pour objet d’aider les statisticiens, les scientifiques du climat et les utilisateurs de produits climatiques a apprehender les concepts et modeles probabilistes utilises dans les generateurs stochastiques de conditions meteorologiques et d’en cerner les avantages et leurs limites.

[1]  Pierre Ailliot,et al.  Space–time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions , 2009 .

[2]  O. D. Jimoh,et al.  The optimum order of a Markov chain model for daily rainfall in Nigeria , 1996 .

[3]  D. Wilks,et al.  The weather generation game: a review of stochastic weather models , 1999 .

[4]  Dennis P. Lettenmaier,et al.  A hierarchical stochastic model of large‐scale atmospheric circulation patterns and multiple station daily precipitation , 1992 .

[5]  D. Maraun,et al.  Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user , 2010 .

[6]  W. Zucchini,et al.  Hidden Markov Models for Time Series: An Introduction Using R , 2009 .

[7]  Mathieu Vrac,et al.  Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France , 2013 .

[8]  P. Renard,et al.  Dealing with spatial heterogeneity , 2005 .

[9]  J. Sansom,et al.  Stochastic seasonality of rainfall in New Zealand , 2013 .

[10]  R. Katz,et al.  Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes , 2012 .

[11]  András Bárdossy,et al.  Modeling daily rainfall using a semi-Markov representation of circulation pattern occurrence , 1991 .

[12]  Malcolm Farrow,et al.  Bayesian modelling of rainfall data by using non‐homogeneous hidden Markov models and latent Gaussian variables , 2015 .

[13]  Richard W. Katz,et al.  Generalized linear modeling approach to stochastic weather generators , 2007 .

[14]  R. Katz,et al.  Reducing overdispersion in stochastic weather generators using a generalized linear modeling approach , 2012 .

[15]  Robert Leconte,et al.  WeaGETS – a Matlab-based daily scale weather generator for generating precipitation and temperature , 2012 .

[16]  R. Leconte,et al.  Stochastic multi-site generation of daily weather data , 2009 .

[17]  R. Chandler,et al.  Spatial‐temporal rainfall simulation using generalized linear models , 2005 .

[18]  Robert Leconte,et al.  Stochastic multisite generation of daily precipitation data using spatial autocorrelation , 2007 .

[19]  Ali M. Mosammam,et al.  Geostatistics: modeling spatial uncertainty, second edition , 2013 .

[20]  T. Wigley,et al.  Statistical downscaling of general circulation model output: A comparison of methods , 1998 .

[21]  J. Sansom,et al.  A hidden seasonal switching model for multisite daily rainfall , 2014 .

[22]  Peter Guttorp,et al.  A Hidden Markov Model for Space‐Time Precipitation , 1991 .

[23]  Chris Kilsby,et al.  Perturbing a Weather Generator using change factors derived from Regional Climate Model simulations , 2011 .

[24]  R. Chandler,et al.  Analysis of rainfall variability using generalized linear models: A case study from the west of Ireland , 2002 .

[25]  Montserrat Fuentes,et al.  Spatial–temporal mesoscale modeling of rainfall intensity using gage and radar data , 2008, 0901.3478.

[26]  Katharine Hayhoe,et al.  Statistical downscaling of precipitation through nonhomogeneous stochastic weather typing , 2007 .

[27]  G. McCabe,et al.  Simulation of precipitation by weather type analysis , 1991 .

[28]  Pierre Ailliot,et al.  Markov-switching autoregressive models for wind time series , 2012, Environ. Model. Softw..

[29]  P. Naveau,et al.  A multi-site hourly precipitation generator based on a frailty-contagion approach , 2014 .

[30]  C. W. Richardson,et al.  Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates , 1998 .

[31]  Upmanu Lall,et al.  A k‐nearest‐neighbor simulator for daily precipitation and other weather variables , 1999 .

[32]  Pascal Yiou,et al.  Winter 2010 in Europe: A cold extreme in a warming climate , 2010 .

[33]  Philippe Renard,et al.  Simulation of rainfall time series from different climatic regions using the direct sampling technique , 2014 .

[34]  J. Sansom,et al.  Fitting hidden semi-Markov models to breakpoint rainfall data , 2001, Journal of Applied Probability.

[35]  Maria Kolokotroni,et al.  London's urban heat island: Impact on current and future energy consumption in office buildings , 2012 .

[36]  F. Serinaldi A multisite daily rainfall generator driven by bivariate copula-based mixed distributions , 2009 .

[37]  A. Bárdossy Atmospheric circulation pattern classification for South-West Germany using hydrological variables , 2010 .

[38]  C. W. Richardson Stochastic simulation of daily precipitation, temperature, and solar radiation , 1981 .

[39]  D. Wilks Interannual variability and extreme-value characteristics of several stochastic daily precipitation models , 1999 .

[40]  C. Thompson,et al.  Fitting a multisite daily rainfall model to New Zealand data , 2007 .

[41]  T. McMahon,et al.  Stochastic generation of annual, monthly and daily climate data: A review , 2001 .

[42]  M. Parlange,et al.  Overdispersion phenomenon in stochastic modeling of precipitation , 1998 .

[43]  Anthony C. Davison,et al.  Threshold modeling of extreme spatial rainfall , 2013 .

[44]  Lucien Duckstein,et al.  Application of a space‐time stochastic model for daily precipitation using atmospheric circulation patterns , 1993 .

[45]  Robert Leconte,et al.  Efficient stochastic generation of multi-site synthetic precipitation data , 2007 .

[46]  Anastassia Baxevani,et al.  Modelling Precipitation in Sweden using multiple step markov chains and a composite model , 2008 .

[47]  K. Gabriel,et al.  A Markov chain model for daily rainfall occurrence at Tel Aviv , 1962 .

[48]  James P. Hughes,et al.  A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena , 1994 .

[49]  V. Monbet,et al.  Non-homogeneous hidden Markov-switching models for wind time series , 2015 .

[50]  D. Wilks Multisite generalization of a daily stochastic precipitation generation model , 1998 .

[51]  M. Parlange,et al.  An Extended Version of the Richardson Model for Simulating Daily Weather Variables , 2000 .

[52]  Michel Lang,et al.  Introducing a rainfall compound distribution model based on weather patterns sub-sampling , 2010 .

[53]  David A. Woolhiser,et al.  A Stochastic Model of n-Day Precipitation , 1975 .

[54]  James P. Hughes,et al.  A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts , 2000 .

[55]  Jan Bulla,et al.  hsmm - An R package for analyzing hidden semi-Markov models , 2010, Comput. Stat. Data Anal..

[56]  Roberto Mínguez,et al.  Climate-based Monte Carlo simulation of trivariate sea states , 2013 .

[57]  Christian Lantuéjoul,et al.  Geostatistical Simulation: Models and Algorithms , 2001 .

[58]  Denis Allard,et al.  Disaggregating daily precipitations into hourly values with a transformed censored latent Gaussian process , 2015, Stochastic Environmental Research and Risk Assessment.

[59]  Budong Qian,et al.  Multisite stochastic weather models for impact studies , 2002 .

[60]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[61]  Arjun K. Gupta,et al.  The Closed Skew-Normal Distribution , 2004 .

[62]  Daniel S. Wilks,et al.  Use of stochastic weathergenerators for precipitation downscaling , 2010 .

[63]  Arjun K. Gupta,et al.  A multivariate skew normal distribution , 2004 .

[64]  Donghwan Lee,et al.  Improved multisite stochastic weather generation with applications to historical data in South Korea , 2010 .

[65]  A. Bárdossy,et al.  Statistical downscaling of precipitation using a stochastic rainfall model conditioned on circulation patterns – an evaluation of assumptions , 2015 .

[66]  P. Guttorp,et al.  A non‐homogeneous hidden Markov model for precipitation occurrence , 1999 .

[67]  M. Parlange,et al.  Generalizations of Chain-Dependent Processes: Application to Hourly Precipitation , 1995 .

[68]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[69]  F. Serinaldi,et al.  Simulating daily rainfall fields over large areas for collective risk estimation , 2014 .

[70]  A. Bárdossy,et al.  Copula based multisite model for daily precipitation simulation , 2009 .

[71]  Christian Onof,et al.  Rainfall modelling using Poisson-cluster processes: a review of developments , 2000 .

[72]  Padhraic Smyth,et al.  Downscaling of Daily Rainfall Occurrence over Northeast Brazil Using a Hidden Markov Model , 2004, Journal of Climate.

[73]  A. Bárdossy,et al.  SPACE-TIME MODEL FOR DAILY RAINFALL USING ATMOSPHERIC CIRCULATION PATTERNS , 1992 .

[74]  R. Katz,et al.  Mixture model of generalized chain-dependent processes and its application to simulation of interannual variability of daily rainfall , 2008 .

[75]  Richard W. Katz,et al.  Precipitation as a Chain-Dependent Process , 1977 .

[76]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[77]  Bruno Mary,et al.  Conceptual basis, formalisations and parameterization of the STICS crop model , 2009 .

[78]  D. Allard,et al.  A stochastic daily weather generator for skewed data , 2010 .

[79]  Pascal Yiou,et al.  AnaWEGE: a weather generator based on analogues of atmospheric circulation , 2014 .

[80]  Mikhail A. Semenov,et al.  A serial approach to local stochastic weather models , 1991 .

[81]  R. Chandler,et al.  Stochastic simulation of rainfall in the semi‐arid Limpopo basin, Botswana , 2012 .

[82]  D. Wilks Stochastic weather generators for climate‐change downscaling, part II: multivariable and spatially coherent multisite downscaling , 2012 .

[83]  Michael F. Hutchinson,et al.  Stochastic space-time weather models from ground-based data , 1995 .

[84]  Richard W. Katz,et al.  Improving the simulation of extreme precipitation events by stochastic weather generators , 2008 .

[85]  A. Munk,et al.  Hidden Markov models for circular and linear-circular time series , 2006, Environmental and Ecological Statistics.