Digital correction method for realizing a phase-stable dual-comb interferometer.

A phase-stable dual-comb interferometer measures materials' broadband optical response functions, including amplitude, frequency, and phase, making it a powerful tool for optical metrology. Normally, the phase-stable dual-comb interferometer is realized via tight phase-locking methods. This paper presents a post-correction algorithm that can compensate for carrier wave phase noise and interferogram timing jitter. The compensating signal is a beat between two combs using a free-running continuous wave laser as an optical intermediary. In our experiment, sub-hertz relative linewidth, ~1 ns relative timing jitter, and 0.2 rad precision in the carrier phase is demonstrated.