Preconditioning a class of fourth order problems by operator splitting

We develop preconditioners for systems arising from finite element discretizations of parabolic problems which are fourth order in space. We consider boundary conditions which yield a natural splitting of the discretized fourth order operator into two (discrete) linear second order elliptic operators, and exploit this property in designing the preconditioners. The underlying idea is that efficient methods and software to solve second order problems with optimal computational effort are widely available. We propose symmetric and non-symmetric preconditioners, along with theory and numerical experiments. They both document crucial properties of the preconditioners as well as their practical performance. It is important to note that we neither need Hs-regularity, s > 1, of the continuous problem nor quasi-uniform grids.

[1]  P. Bjørstad Fast Numerical Solution of the Biharmonic Dirichlet Problem on Rectangles , 1983 .

[2]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[3]  Martin Rumpf,et al.  Axioms and variational problems in surface parameterization , 2004, Comput. Aided Geom. Des..

[4]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[5]  Contents , 2020, Neurobiology of Aging.

[6]  Martin Rumpf,et al.  Nonnegativity preserving convergent schemes for the thin film equation , 2000, Numerische Mathematik.

[7]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[8]  Ricardo H. Nochetto,et al.  Parametric FEM for geometric biomembranes , 2010, J. Comput. Phys..

[9]  Gerhard Dziuk,et al.  Computational parametric Willmore flow , 2008, Numerische Mathematik.

[10]  Ricardo H. Nochetto,et al.  Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids , 2009 .

[11]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[12]  David J. Silvester,et al.  A Black-Box Multigrid Preconditioner for the Biharmonic Equation , 2004 .

[13]  C. M. Elliott,et al.  The viscous Cahn-Hilliard equation , 2002 .

[14]  Gongfu Liao,et al.  Transitivity, mixing and chaos for a class of set-valued mappings , 2006 .

[15]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[16]  Ricardo H. Nochetto,et al.  A FINITE ELEMENT SCHEME FOR THE EVOLUTION OF ORIENTATIONAL ORDER IN FLUID MEMBRANES , 2010 .

[17]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[18]  Charles M. Elliott,et al.  The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.

[19]  Zhiming Chen,et al.  Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems , 2006 .

[20]  D. Braess,et al.  On the numerical solution of the biharmonic equation and the role of squaring matrices , 1986 .

[21]  Hamilton-Jacobi Equations,et al.  Multigrid Methods for , 2011 .

[22]  Andrew M. Stuart,et al.  The viscous Cahn-Hilliard equation. I. Computations , 1995 .

[23]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[24]  Charles M. Elliott,et al.  Computation of Geometric PDEs and Mean Curvature Flow , 2005 .

[25]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[26]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[27]  Xuejun Zhang,et al.  Multilevel Schwarz methods , 1992 .

[28]  Michael J. Holst,et al.  Optimality of Multilevel Preconditioners for Local Mesh Refinement in Three Dimensions , 2006, SIAM J. Numer. Anal..

[29]  James H. Bramble,et al.  The analysis of multigrid methods , 2000 .

[30]  M. R. Hanisch Multigrid preconditioning for mixed finite element methods , 1992 .

[31]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .

[32]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[33]  Harald Garcke,et al.  A parametric finite element method for fourth order geometric evolution equations , 2007, J. Comput. Phys..

[34]  Andrea L. Bertozzi,et al.  Axisymmetric Surface Diffusion: Dynamics and Stability of Self-Similar Pinchoff , 1998 .

[35]  Yongzhong Song,et al.  A note on the variation of the spectrum of an arbitrary matrix , 2002 .

[36]  Free Boundary Problems , 1983 .

[37]  Folkmar A. Bornemann,et al.  An adaptive multilevel approach to parabolic equations : II. Variable-order time discretization based on a multiplicative error correction , 1991, IMPACT Comput. Sci. Eng..

[38]  O. Widlund Some Schwarz Methods for Symmetric and Nonsymmetric Elliptic Problems , 1991 .

[39]  Gene H. Golub,et al.  Matrix computations , 1983 .

[40]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[41]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[42]  Ricardo H. Nochetto,et al.  Surface Diffusion of Graphs: Variational Formulation, Error Analysis, and Simulation , 2004, SIAM J. Numer. Anal..

[43]  M. Rumpf,et al.  Numerical methods for fourth order nonlinear degenerate diffusion problems , 2002 .

[44]  Petter E. Bjørstad,et al.  Timely Communication: Efficient Algorithms for Solving a Fourth-Order Equation with the Spectral-Galerkin Method , 1997, SIAM J. Sci. Comput..

[45]  Milan D. Mihajlovic,et al.  Efficient parallel solvers for the biharmonic equation , 2004, Parallel Comput..

[46]  Ricardo H. Nochetto,et al.  Finite Element Methods for Surface Diffusion , 2003 .

[47]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[48]  Günther Grün,et al.  On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions , 2003, Math. Comput..

[49]  Martin Rumpf,et al.  A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..

[50]  Ricardo H. Nochetto,et al.  A finite element method for surface diffusion: the parametric case , 2005 .

[51]  Mary C. Pugh,et al.  Long-wave instabilities and saturation in thin film equations , 1998 .

[52]  HARALD GARCKE,et al.  On the Variational Approximation of Combined Second and Fourth Order Geometric Evolution Equations , 2007, SIAM J. Sci. Comput..

[53]  John W. Barrett,et al.  Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..

[54]  Harald Garcke,et al.  Parametric Approximation of Willmore Flow and Related Geometric Evolution Equations , 2008, SIAM J. Sci. Comput..

[55]  Panayot S. Vassilevski,et al.  Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..

[56]  Thomas A. Manteuffel,et al.  Preconditioning and boundary conditions without H 2 estimates: L 2 condition numbers and the distribution of the singular values , 1993 .

[57]  Qiang Du,et al.  ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL , 2007 .

[58]  L. Trefethen Spectra and pseudospectra , 2005 .

[59]  Raluca E. Rusu An algorithm for the elastic flow of surfaces , 2005 .