Comparison of Evaporation and Cold Pool Development between Single-moment and Multi-moment Bulk Microphysics Schemes in Idealized Simulations of Tornadic Thunderstorms

Abstract Idealized simulations of the 3 May 1999 Oklahoma tornadic supercell storms are conducted at various horizontal grid spacings ranging from 1 km to 250 m, using a sounding extracted from a prior 3-km grid spacing real-data simulation. A sophisticated multimoment bulk microphysics parameterization scheme capable of predicting up to three moments of the particle or drop size distribution (DSD) for several liquid and ice hydrometeor species is evaluated and compared with traditional single-moment schemes. The emphasis is placed on the impact of microphysics, specifically rain evaporation and size sorting, on cold pool strength and structure, and on the overall reflectivity structure of the simulated storms. It is shown through microphysics budget analyses and examination of specific processes within the low-level downdraft regions that the multimoment scheme has important advantages, which lead to a weaker and smaller cold pool and better reflectivity structure, particularly in the forward-flank regio...

[1]  E. Rasmussen,et al.  A Comparison of the Conservation of Number Concentration for the Continuous Collection and Vapor Diffusion Growth Equations Using One- and Two-Moment Schemes , 2005 .

[2]  Joanne Simpson,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations , 1995 .

[3]  C. Doswell,et al.  Severe Thunderstorm Evolution and Mesocyclone Structure as Related to Tornadogenesis , 1979 .

[4]  E. Mansell EnKF analysis and forecast predictability of a tornadic supercell Storm , 2008 .

[5]  Erik N. Rasmussen,et al.  Precipitation Uncertainty Due to Variations in Precipitation Particle Parameters within a Simple Microphysics Scheme , 2004 .

[6]  Zev Levin,et al.  The Evolution of Raindrop Spectra. Part II: Collisional Collection/Breakup and Evaporation in a Rainshaft , 1989 .

[7]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[8]  Erik N. Rasmussen,et al.  Direct Surface Thermodynamic Observations within the Rear-Flank Downdrafts of Nontornadic and Tornadic Supercells , 2002 .

[9]  G. Feingold,et al.  The Evolution of Raindrop Spectra. Part III: Downdraft Generation in an Axisymmetrical Rainshaft Model , 1991 .

[10]  W. Cotton,et al.  A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado Winter Snowfall Event , 2005 .

[11]  Alexander Khain,et al.  A comparison of spectral bin and two-moment bulk mixed-phase cloud microphysics , 2006 .

[12]  J. Wyngaard,et al.  Resolution Requirements for the Simulation of Deep Moist Convection , 2003 .

[13]  Robert A. Black,et al.  The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing , 2001 .

[14]  W. Cotton,et al.  New RAMS cloud microphysics parameterization part I: the single-moment scheme , 1995 .

[15]  J. Curry,et al.  A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description , 2005 .

[16]  P. Markowski Mobile Mesonet Observations on 3 May 1999 , 2002 .

[17]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter , 2005 .

[18]  Jidong Gao,et al.  The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation , 2003 .

[19]  Paul Markowski,et al.  A Numerical Investigation of the Effects of Dry Air Aloft on Deep Convection , 2009 .

[20]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[21]  E. McCaul,et al.  The Sensitivity of Simulated Convective Storms to Variations in Prescribed Single-Moment Microphysics Parameters that Describe Particle Distributions, Sizes, and Numbers , 2006 .

[22]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[23]  William R. Cotton,et al.  The Impact of Hail Size on Simulated Supercell Storms , 2004 .

[24]  Axel Seifert,et al.  On the Parameterization of Evaporation of Raindrops as Simulated by a One-Dimensional Rainshaft Model , 2008 .

[25]  William R. Cotton,et al.  A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module Descriptions and Supercell Test Simulations , 2004 .

[26]  Charles A. Doswell,et al.  The Tornado : its structure, dynamics, prediction, and hazards , 1993 .

[27]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[28]  E. McCaul,et al.  The Impact on Simulated Storm Structure and Intensity of Variations in the Mixed Layer and Moist Layer Depths , 2002 .

[29]  J. Testud,et al.  Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data. Part I: Filtering, Interpolating and Differentiating the Raw Data , 1983 .

[30]  K. D. Beheng,et al.  A double-moment parameterization for simulating autoconversion, accretion and selfcollection , 2001 .

[31]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part IV: Sensitivity Experiments , 2006 .

[32]  R. Rasmussen,et al.  Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model , 1998 .

[33]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part III: Control Simulation of a Hailstorm , 2006 .

[34]  Paul J. Roebber,et al.  Synoptic regulation of the 3 May 1999 tornado outbreak , 2002 .

[35]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[36]  G. Thompson,et al.  Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes , 2009 .

[37]  A. Waldvogel,et al.  The N0 Jump of Raindrop Spectra , 1974 .

[38]  Jerry M. Straka,et al.  Numerical Simulations of Microburst-producing Storms: Some Results from Storms Observed during COHMEX , 1993 .

[39]  R. C. Srivastava,et al.  An Analytical Solution for Raindrop Evaporation and Its Application to Radar Rainfall Measurements , 2001 .

[40]  G. Romine Bridging the gap between observed and simulated supercell cold pool characteristics , 2008 .

[41]  J. Marshall,et al.  THE DISTRIBUTION WITH SIZE OF AGGREGATE SNOWFLAKES , 1958 .

[42]  Ming Xue,et al.  High-Order Monotonic Numerical Diffusion and Smoothing , 2000 .

[43]  R. Simpson On The Computation of Equivalent Potential Temperature , 1978 .

[44]  Richard L. Thompson,et al.  An Overview of Environmental Conditions and Forecast Implications of the 3 May 1999 Tornado Outbreak , 2000 .

[45]  Charles A. Doswell,et al.  The Tornadoes of 3 May 1999: Event Verification in Central Oklahoma and Related Issues , 2002 .

[46]  Joanne Simpson,et al.  Goddard Cumulus Ensemble Model. Part I: Model Description , 1993 .

[47]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[48]  Matthew S. Gilmore,et al.  The Influence of Midtropospheric Dryness on Supercell Morphology and Evolution , 1998 .

[49]  Ming Xue,et al.  Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms , 2008 .

[50]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description , 2005 .

[51]  D. Dawson Impact of multi-moment microphysics and model resolution on predicted cold pool and reflectivity intensity and structures in the Oklahoma tornadic supercell storms of 3 May 1999 , 2007 .