Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons

[1]  T. Dawson,et al.  PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency , 2020, Molecular Neurodegeneration.

[2]  T. Dawson,et al.  Parkin interacting substrate zinc finger protein 746 is a pathological mediator in Parkinson's disease. , 2019, Brain : a journal of neurology.

[3]  R. Jaenisch,et al.  Stem Cells, Genome Editing, and the Path to Translational Medicine , 2018, Cell.

[4]  E. Papaleo,et al.  HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα , 2018, Nature Communications.

[5]  P. Verstreken,et al.  Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila , 2018, eLife.

[6]  Carolyn M. Sue,et al.  Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives , 2018, Current Neurology and Neuroscience Reports.

[7]  R. Youle,et al.  Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance , 2018, Current Biology.

[8]  A. Prescott,et al.  Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand , 2018, Cell metabolism.

[9]  A. Whitworth,et al.  Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin , 2018, bioRxiv.

[10]  C. Moraes,et al.  Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease , 2017, The Journal of Neuroscience.

[11]  K. Lohmann,et al.  GENETICS OF PARKINSON DISEASE , 2008 .

[12]  J. Götz,et al.  Shedding light on mitophagy in neurons: what is the evidence for PINK1/Parkin mitophagy in vivo? , 2018, Cellular and Molecular Life Sciences.

[13]  S. Tait,et al.  Parkin-Independent Mitophagy Controls Chemotherapeutic Response in Cancer Cells. , 2017, Cell reports.

[14]  T. Dawson,et al.  Activation mechanisms of the E3 ubiquitin ligase parkin. , 2017, The Biochemical journal.

[15]  A. Whitworth,et al.  PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? , 2017, Current opinion in genetics & development.

[16]  J. Corvol,et al.  PINK1/Parkin-Dependent Mitochondrial Surveillance: From Pleiotropy to Parkinson's Disease , 2017, Front. Mol. Neurosci..

[17]  T. Dawson,et al.  PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. , 2017, Cell reports.

[18]  E. Merzetti,et al.  Identifying potential PARIS homologs in D. melanogaster. , 2016, Genetics and molecular research : GMR.

[19]  A. Mrejeru,et al.  Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation , 2016, Stem cell reports.

[20]  J. Andersen,et al.  Detrimental effects of oxidative losses in parkin activity in a model of sporadic Parkinson's disease are attenuated by restoration of PGC1alpha , 2016, Neurobiology of Disease.

[21]  Michael J. Munson,et al.  mito-QC illuminates mitophagy and mitochondrial architecture in vivo , 2016, The Journal of cell biology.

[22]  T. Dawson,et al.  Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity , 2016, Science Translational Medicine.

[23]  J. Andersen,et al.  Mitochondrial Quality Control via the PGC1α-TFEB Signaling Pathway Is Compromised by Parkin Q311X Mutation But Independently Restored by Rapamycin , 2015, The Journal of Neuroscience.

[24]  T. Dawson,et al.  Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration , 2015, Proceedings of the National Academy of Sciences.

[25]  Scott R. Kennedy,et al.  Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress , 2015, Neuron.

[26]  M. Rao,et al.  Mitochondrial Alterations by PARKIN in Dopaminergic Neurons Using PARK2 Patient-Specific and PARK2 Knockout Isogenic iPSC Lines , 2015, Stem cell reports.

[27]  R. Youle,et al.  The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease , 2015, Neuron.

[28]  D. Kass,et al.  Parkin‐independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain , 2014, The EMBO journal.

[29]  S. Gygi,et al.  Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. , 2014, Molecular cell.

[30]  A. Brice,et al.  Tissue- and Cell-Specific Mitochondrial Defect in Parkin-Deficient Mice , 2014, PloS one.

[31]  T. Dawson,et al.  Parkin and PINK1: much more than mitophagy , 2014, Trends in Neurosciences.

[32]  Ted M. Dawson,et al.  Parkin Plays a Role in Sporadic Parkinson's Disease , 2013, Neurodegenerative Diseases.

[33]  S. Barth,et al.  SNAP-tag technology: a powerful tool for site specific conjugation of therapeutic and imaging agents. , 2013, Current pharmaceutical design.

[34]  Gennifer E. Merrihew,et al.  The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo , 2013, Proceedings of the National Academy of Sciences.

[35]  D. Surmeier,et al.  Floor plate-derived dopamine neurons from hESCs efficiently engraft in animal models of PD , 2011, Nature.

[36]  I. Martin,et al.  Recent advances in the genetics of Parkinson's disease. , 2011, Annual review of genomics and human genetics.

[37]  Atsushi Miyawaki,et al.  A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. , 2011, Chemistry & biology.

[38]  F. Sterky,et al.  Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[39]  R. Scarpulla,et al.  Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. , 2011, Biochimica et biophysica acta.

[40]  T. Dawson,et al.  PARIS (ZNF746) Repression of PGC-1α Contributes to Neurodegeneration in Parkinson's Disease , 2011, Cell.

[41]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[42]  Ted M. Dawson,et al.  PINK1-dependent recruitment of Parkin to mitochondria in mitophagy , 2009, Proceedings of the National Academy of Sciences.

[43]  Philippe Pierre,et al.  SUnSET, a nonradioactive method to monitor protein synthesis , 2009, Nature Methods.

[44]  Jie Shen,et al.  Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress , 2008, Proceedings of the National Academy of Sciences.

[45]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[46]  T. Dawson,et al.  Diagnosis and treatment of Parkinson disease: molecules to medicine. , 2006, The Journal of clinical investigation.

[47]  Changan Jiang,et al.  Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin , 2006, Nature.

[48]  Joachim Klose,et al.  Mitochondrial Dysfunction and Oxidative Damage in parkin-deficient Mice* , 2004, Journal of Biological Chemistry.

[49]  J. C. Greene,et al.  Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[51]  Mary Anne Wheeler,et al.  Stem , 1985 .