Linear Spatio-Temporal Scale-Space

This article presents a scale-space theory for spatio-temporal data. Starting from the main assumptions that (i) the scale-space should be generated by convolution with a semi-group of filter kernels and that (ii) local extrema must not be enhanced when the scale parameter increases, a complete taxonomy is given of the linear scale-space concepts that satisfy these conditions on spatial, temporal and spatio-temporal domains, including the cases with continuous as well as discrete data.

[1]  Max A. Viergever,et al.  Scale-Space Theory in Computer Vision , 1997 .

[2]  Luc Van Gool,et al.  An Extended Class of Scale-Invariant and Recursive Scale Space Filters , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[4]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[5]  R. Young GAUSSIAN DERIVATIVE THEORY OF SPATIAL VISION: ANALYSIS OF CORTICAL CELL RECEPTIVE FIELD LINE-WEIGHTING PROFILES. , 1985 .

[6]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[7]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[8]  P. J. Burt,et al.  Fast Filter Transforms for Image Processing , 1981 .

[9]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[10]  H. Kalmus Biological Cybernetics , 1972, Nature.

[11]  Lars Bretzner,et al.  On the Handling of Spatial and Temporal Scales in Feature Tracking , 1997, Scale-Space.

[12]  Frédéric Guichard,et al.  A morphological, affine, and Galilean invariant scale-space for movies , 1998, IEEE Trans. Image Process..

[13]  Peter Johansen,et al.  Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.

[14]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[16]  Pietro Perona Steerable-scalable kernels for edge detection and junction analysis , 1992, Image Vis. Comput..

[17]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[18]  Tony Lindeberg,et al.  Scale-Space with Casual Time Direction , 1996, ECCV.

[19]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[21]  T. Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure , 1997 .

[22]  R A Young,et al.  The Gaussian derivative model for spatial vision: I. Retinal mechanisms. , 1988, Spatial vision.

[23]  Tony Lindeberg,et al.  On Automatic Selection of Temporal Scales in Time-Causal Scale-Space , 1997, AFPAC.

[24]  Thomas S. Huang,et al.  Image processing , 1971 .

[25]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[26]  T. Lindeberg Scale-space with Causal Time Direction , 1996 .

[27]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[28]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  S. Bochner,et al.  Book Review: Einar Hille, Functional analysis and semi-groups , 1949 .

[30]  Tony Lindeberg,et al.  On the Axiomatic Foundations of Linear Scale-Space , 1997, Gaussian Scale-Space Theory.

[31]  Keith Langley,et al.  Recursive Filters for Optical Flow , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Lewis D. Griffin Critical Point Events in Affine Scale-Space , 1997, Gaussian Scale-Space Theory.

[33]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Max A. Viergever,et al.  Families of Tuned Scale-Space Kernels , 1992, ECCV.

[35]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[36]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[37]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..