Atomically Intimate Contact between Solid Electrolytes and Electrodes for Li Batteries

[1]  Qi Li,et al.  Recent Progress of the Solid‐State Electrolytes for High‐Energy Metal‐Based Batteries , 2018 .

[2]  Lei Wang,et al.  Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification , 2018 .

[3]  T. Ohno,et al.  Positive and Negative Aspects of Interfaces in Solid-State Batteries , 2018 .

[4]  Yan Yu,et al.  The nanoscale circuitry of battery electrodes , 2017, Science.

[5]  A. Hayashi,et al.  Recent progress on interface formation in all-solid-state batteries , 2017 .

[6]  M. Wagemaker,et al.  Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface , 2017, Nature Communications.

[7]  C. Julien,et al.  Nanocrystalline Li2TiO3 electrodes for supercapattery application , 2017, Ionics.

[8]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[9]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[10]  L. M. Rodriguez-Martinez,et al.  Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. , 2017, Chemical Society Reviews.

[11]  Peng Long,et al.  High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2016, Nano letters.

[12]  Marnix Wagemaker,et al.  Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery. , 2016, Journal of the American Chemical Society.

[13]  Sehee Lee,et al.  FeS2‐Imbedded Mixed Conducting Matrix as a Solid Battery Cathode , 2016 .

[14]  M. Xiao,et al.  Polymer electrolytes for lithium polymer batteries , 2016 .

[15]  Xiulin Fan,et al.  High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. , 2016, Nano letters.

[16]  M. Chi,et al.  Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries , 2016 .

[17]  Seung M. Oh,et al.  Solution‐Processable Glass LiI‐Li4SnS4 Superionic Conductors for All‐Solid‐State Li‐Ion Batteries , 2016, Advanced materials.

[18]  T. Bredow,et al.  Lithium Diffusion Pathways in β-Li2TiO3: A Theoretical Study , 2016 .

[19]  Seung M. Oh,et al.  Solution‐Processable Glass LiI‐Li4SnS4 Superionic Conductors for All‐Solid‐State Li‐Ion Batteries , 2016, Advanced materials.

[20]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[21]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[22]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[23]  C. Nan,et al.  Oxide Electrolytes for Lithium Batteries , 2015 .

[24]  Young Jin Nam,et al.  Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk‐Type All‐Solid‐State Lithium‐Ion Batteries , 2015 .

[25]  C. Liang,et al.  Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes , 2014 .

[26]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[27]  Haiyan Wang,et al.  Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images , 2013 .

[28]  Lewys Jones,et al.  Identifying and Correcting Scan Noise and Drift in the Scanning Transmission Electron Microscope , 2013, Microscopy and Microanalysis.

[29]  Jacob L. Jones,et al.  Correlation Between Oxygen Vacancy, Microstrain, and Cation Distribution in Lithium-Excess Layered Oxides During the First Electrochemical Cycle , 2013 .

[30]  Yadong Li,et al.  Nanoscale coating of LiMO2 (M = Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: toward better rate capabilities for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[31]  J. Colin,et al.  Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy , 2012 .

[32]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[33]  Yuichi Sato,et al.  Direct observation of the partial formation of a framework structure for Li-rich layered cathode mat , 2011 .

[34]  N. Shibata,et al.  Dynamics of annular bright field imaging in scanning transmission electron microscopy. , 2010, Ultramicroscopy.

[35]  K. Tadanaga,et al.  All-Solid-State Lithium Secondary Batteries Using LiMn2O4 Electrode and Li2S – P2S5 Solid Electrolyte , 2010 .

[36]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[37]  H. Koyama,et al.  Crystal and defect structures of La2/3 xLi3xTiO3 (x ~ 0.1) produced by a melt process. , 2007, Journal of electron microscopy.

[38]  G. Steinle‐Neumann,et al.  The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases , 2007 .

[39]  Y. Morii,et al.  Structural investigations of migration pathways in lithium ion-conducting La2/3−xLi3xTiO3 perovskites , 2006 .

[40]  V. Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[41]  Jiang,et al.  EELS analysis of cation valence states and oxygen vacancies in magnetic oxides , 2000, Micron.

[42]  H. Chung,et al.  The microscopic features of (Li0.5La0.5)TiO3 , 1999 .

[43]  Martin Hÿtch,et al.  Quantitative measurement of displacement and strain fields from HREM micrographs , 1998 .

[44]  Liquan Chen,et al.  Oxide cathode with perovskite structure for rechargeable lithium batteries , 1995 .

[45]  T. Ohzuku,et al.  Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells , 1993 .

[46]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[47]  S J Pennycook,et al.  Z-Contrast Transmission Electron Microscopy: Direct Atomic Imaging of Materials , 1992 .

[48]  David C. Joy,et al.  A model for calculating secondary and backscattered electron yields , 1987 .

[49]  J. Tarascon,et al.  Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges , 2015 .

[50]  A. Chroneos,et al.  Electronic Supplementary Information Genetics of Superionic Conductivity in Lithium Lanthanum Titanates , 2014 .

[51]  R. Egerton Electron energy-loss spectroscopy in the TEM , 2008 .