Metal-Organic Framework Nodes Support Single-Site Magnesium-Alkyl Catalysts for Hydroboration and Hydroamination Reactions.

Here we present the first example of a single-site main group catalyst stabilized by a metal-organic framework (MOF) for organic transformations. The straightforward metalation of the secondary building units of a Zr-MOF with Me2Mg affords a highly active and reusable solid catalyst for hydroboration of carbonyls and imines and for hydroamination of aminopentenes. Impressively, the Mg-functionalized MOF displayed very high turnover numbers of up to 8.4 × 10(4) for ketone hydroboration and could be reused more than 10 times. MOFs can thus be used to develop novel main group solid catalysts for sustainable chemical synthesis.

[1]  Wenbin Lin,et al.  Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations. , 2016, Journal of the American Chemical Society.

[2]  Demin Liu,et al.  Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers. , 2015, Chemical reviews.

[3]  Francis X. Greene,et al.  Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation. , 2015, Journal of the American Chemical Society.

[4]  Wenbin Lin,et al.  Salicylaldimine-based metal-organic framework enabling highly active olefin hydrogenation with iron and cobalt catalysts. , 2014, Journal of the American Chemical Society.

[5]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[6]  Wenbin Lin,et al.  Metal-organic frameworks for artificial photosynthesis and photocatalysis. , 2014, Chemical Society reviews.

[7]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[8]  A. Ellern,et al.  Magnesium-catalyzed hydroboration of esters: evidence for a new zwitterionic mechanism , 2014 .

[9]  L. Schafer,et al.  Transition‐Metal‐Catalyzed Hydroamination Reactions , 2013 .

[10]  S. M. Wales,et al.  Asymmetric synthesis of indole homo-Michael adducts via dynamic kinetic Friedel-Crafts alkylation with cyclopropanes. , 2013, Organic letters.

[11]  E. Schulz,et al.  Asymmetric hydroamination: a survey of the most recent developments. , 2013, Chemistry.

[12]  G. Kociok‐Köhn,et al.  Magnesium catalysis of imine hydroboration. , 2013, Chemistry.

[13]  Thierry Roisnel,et al.  Heteroleptic silylamido phenolate complexes of calcium and the larger alkaline earth metals: β-agostic Ae⋅⋅⋅Si-H stabilization and activity in the ring-opening polymerization of L-lactide. , 2012, Chemistry.

[14]  G. Kociok‐Köhn,et al.  Magnesium-catalysed hydroboration of aldehydes and ketones. , 2012, Chemical communications.

[15]  Cheng Wang,et al.  Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. , 2012, Chemical reviews.

[16]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[17]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[18]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[19]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[20]  D. Stalke,et al.  Assembling zirconium and calcium moieties through an oxygen center for an intramolecular hydroamination reaction: a single system for double activation. , 2011, Angewandte Chemie.

[21]  A. Ellern,et al.  Concerted C-N and C-H bond formation in a magnesium-catalyzed hydroamination. , 2010, Journal of the American Chemical Society.

[22]  A. Barrett,et al.  Intramolecular hydroamination of aminoalkenes by calcium and magnesium complexes: a synthetic and mechanistic study. , 2009, Journal of the American Chemical Society.

[23]  S. Harder,et al.  Well-defined silica-supported calcium reagents: control of Schlenk equilibrium by grafting. , 2009, Chemistry.

[24]  T. Müller,et al.  Hydroamination: direct addition of amines to alkenes and alkynes. , 2008, Chemical reviews.

[25]  S. Blechert,et al.  Aminotroponate and Aminotroponiminate Calcium Amides as Catalysts for the Hydroamination/Cyclization Catalysis , 2007 .

[26]  P. Hitchcock,et al.  Calcium-Catalyzed Intermolecular Hydrophosphination , 2007 .

[27]  S. Harder,et al.  Hydrosilylation of alkenes with early main-group metal catalysts. , 2006, Angewandte Chemie.

[28]  Chengdu Liang,et al.  A microporous metal-organic framework for gas-chromatographic separation of alkanes. , 2006, Angewandte Chemie.

[29]  M. Hill,et al.  Calcium-mediated intramolecular hydroamination catalysis. , 2005, Journal of the American Chemical Society.

[30]  P. Hitchcock,et al.  Solution- and solid-state characterisation of a configurationally-stable beta-diketiminato-supported calcium primary amide. , 2004, Dalton transactions.

[31]  T. Marks,et al.  Organolanthanide-catalyzed hydroamination. , 2004, Accounts of chemical research.

[32]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[33]  Wenbin Lin,et al.  Crystal engineering of NLO materials based on metal--organic coordination networks. , 2002, Accounts of chemical research.

[34]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[35]  W. Schlenk Über die Konstitution der Grignardschen Magnesiumverbindungen , 1929 .

[36]  Sudheer Kumar Singh,et al.  Transition-Metal-Catalyzed Cross-Coupling Reactions , 2010 .

[37]  M. Chisholm,et al.  Monomeric metal alkoxides and trialkyl siloxides: (BDI)Mg(OtBu)(THF) and (BDI)Zn(OSiPh3)(THF). Comments on single site catalysts for ring-opening polymerization of lactides , 2001 .