Compressed Threshold Pivoting for Sparse Symmetric Indefinite Systems

A key technique for controlling numerical stability in sparse direct solvers is threshold partial pivoting. When selecting a pivot, the entire candidate pivot column below the diagonal must be up-to-date and must be scanned. If the factorization is parallelized across a large number of cores, communication latencies can be the dominant computational cost. In this paper, we propose two alternative pivoting strategies for sparse symmetric indefinite matrices of full rank that significantly reduce communication by compressing the necessary data into a small matrix that can be used to select pivots. Once pivots have been chosen, they can be applied in a communication-efficient fashion. For an $n\times p$ submatrix on $P$ processors, we show our methods perform a factorization using $O(\log P)$ messages instead of the $O(p\log P)$ for threshold partial pivoting. The additional costs in terms of operations and communication bandwidth are relatively small. A stability proof is given and numerical results using a...

[1]  D. S. Parker,et al.  The randomizing FFT : an alternative to pivoting in GaussianeliminationD , 1995 .

[2]  Jennifer A. Scott,et al.  Pivoting strategies for tough sparse indefinite systems , 2013, TOMS.

[3]  Jennifer A. Scott,et al.  An indefinite sparse direct solver for large problems on multicore machines , 2010 .

[4]  Danny C. Sorensen,et al.  Analysis of Pairwise Pivoting in Gaussian Elimination , 1985, IEEE Transactions on Computers.

[5]  Olaf Schenk,et al.  Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization , 2007, Comput. Optim. Appl..

[6]  J. Scott,et al.  A study of pivoting strategies for tough sparse indefinite systems , 2012 .

[7]  Victor Eijkhout,et al.  A Parallel Sparse Direct Solver via Hierarchical DAG Scheduling , 2014, ACM Trans. Math. Softw..

[8]  L. Trefethen,et al.  Average-case stability of Gaussian elimination , 1990 .

[9]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[10]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[11]  Iain S. Duff,et al.  On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..

[12]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[13]  M. SIAMJ. STABILITY OF THE DIAGONAL PIVOTING METHOD WITH PARTIAL PIVOTING , 1995 .

[14]  John G. Lewis,et al.  Accurate Symmetric Indefinite Linear Equation Solvers , 1999, SIAM J. Matrix Anal. Appl..

[15]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[16]  Jennifer A. Scott,et al.  HSL_MA97 : a bit-compatible multifrontal code for sparse symmetric systems , 2011 .

[17]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[18]  I. Duff,et al.  Towards a stable static pivoting strategy for the sequential and parallel solution of sparse symmetric indefinite systems , 2005 .

[19]  Iain S. Duff,et al.  Strategies for Scaling and Pivoting for Sparse Symmetric Indefinite Problems , 2005, SIAM J. Matrix Anal. Appl..

[20]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[21]  James Demmel,et al.  Making Sparse Gaussian Elimination Scalable by Static Pivoting , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[22]  IAIN S. DUFF,et al.  Towards Stable Mixed Pivoting Strategies for the Sequential and Parallel Solution of Sparse Symmetric Indefinite Systems , 2007, SIAM J. Matrix Anal. Appl..

[23]  Jennifer A. Scott,et al.  Partial factorization of a dense symmetric indefinite matrix , 2012, ACM Trans. Math. Softw..

[24]  I. Duff,et al.  The factorization of sparse symmetric indefinite matrices , 1991 .

[25]  D. W. Barron,et al.  Solution of Simultaneous Linear Equations using a Magnetic-Tape Store , 1960, Computer/law journal.

[26]  Jack J. Dongarra,et al.  Reducing the Amount of Pivoting in Symmetric Indefinite Systems , 2011, PPAM.

[27]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[28]  James Demmel,et al.  CALU: A Communication Optimal LU Factorization Algorithm , 2011, SIAM J. Matrix Anal. Appl..