Saturated Particle Filter: Almost sure convergence and improved resampling
暂无分享,去创建一个
[1] Dominic S. Lee,et al. A particle algorithm for sequential Bayesian parameter estimation and model selection , 2002, IEEE Trans. Signal Process..
[2] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[3] Petar M. Djuric,et al. Gaussian particle filtering , 2003, IEEE Trans. Signal Process..
[4] Biao Huang,et al. Constrained Bayesian state estimation – A comparative study and a new particle filter based approach , 2010 .
[5] Hisashi Tanizaki,et al. Nonlinear and non-Gaussian state-space modeling with Monte Carlo simulations , 1998 .
[6] G. Eyink,et al. Ensemble Filtering for Nonlinear Dynamics , 2003 .
[7] Jun S. Liu,et al. Sequential Imputations and Bayesian Missing Data Problems , 1994 .
[8] Robert Babuska,et al. Saturated particle filter , 2011, Proceedings of the 2011 American Control Conference.
[9] Robert Babuska,et al. Particle filters for estimating average grain diameter of material excavated by hopper dredger , 2010, 2010 IEEE International Conference on Control Applications.
[10] James J. Little,et al. A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.
[11] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[12] G. Kitagawa. Theory and Methods , 1998 .
[13] F. Simonot. CONVERGENCE RATE FOR THE DISTRIBUTIONS OF GI/M/1/n AND M/GI/1/n AS n TENDS TO INFINITY , 1997 .
[14] Branko Ristic,et al. Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .
[15] A. Papandreou-Suppappola,et al. A Particle Filtering Approach To Constrained Motion Estimation In Tracking Multiple Targets , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..
[16] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[17] Herman Bruyninckx,et al. Kalman filters for non-linear systems: a comparison of performance , 2004 .
[18] Kazufumi Ito,et al. Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..
[19] Prem K. Goel,et al. Bayesian estimation via sequential Monte Carlo sampling - Constrained dynamic systems , 2007, Autom..
[20] Dennis S. Bernstein,et al. Unscented filtering for interval-constrained nonlinear systems , 2008, 2008 47th IEEE Conference on Decision and Control.
[21] Geo. R. Lawrence Co.. Pacific Grove, California , 1906 .
[22] Wolfgang Stadje. A new approach to the Lindley recursion , 1997 .
[23] Petar M. Djuric,et al. Gaussian sum particle filtering , 2003, IEEE Trans. Signal Process..
[24] Sirish L. Shah,et al. Constrained Nonlinear State Estimation Using Ensemble Kalman Filters , 2010 .
[25] Ondrej Straka,et al. Truncation nonlinear filters for state estimation with nonlinear inequality constraints , 2012, Autom..
[26] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[27] Hisashi Tanizaki,et al. Nonlinear Filters: Estimation and Applications , 1993 .
[28] Robert J. Elliott,et al. Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature , 2007, Proceedings of the IEEE.
[29] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[30] G. Kitagawa. Non-Gaussian state space modeling of time series , 1987, 26th IEEE Conference on Decision and Control.
[31] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[32] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[33] G. Kitagawa. Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .
[34] Niels Kjølstad Poulsen,et al. New developments in state estimation for nonlinear systems , 2000, Autom..
[35] Ivo J.B.F. Adan,et al. A LINDLEY-TYPE EQUATION ARISING FROM A CAROUSEL PROBLEM , 2004 .
[36] N. Metropolis,et al. The Monte Carlo method. , 1949 .
[37] H. Kunsch. Recursive Monte Carlo filters: Algorithms and theoretical analysis , 2006, math/0602211.
[38] Jeffrey K. Uhlmann,et al. Corrections to "Unscented Filtering and Nonlinear Estimation" , 2004, Proc. IEEE.
[39] Hisashi Tanizaki,et al. Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration , 1994 .
[40] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[41] S. Julier,et al. A General Method for Approximating Nonlinear Transformations of Probability Distributions , 1996 .
[42] Yingmin Jia,et al. An Improvement on Resampling Algorithm of Particle Filters , 2010, IEEE Transactions on Signal Processing.
[43] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[44] H. Sorenson,et al. Recursive bayesian estimation using gaussian sums , 1971 .
[45] Miroslav Simandl,et al. Truncated unscented particle filter , 2011, Proceedings of the 2011 American Control Conference.
[46] G. Kitagawa. A self-organizing state-space model , 1998 .
[47] Arnaud Doucet,et al. A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..
[48] Pau Klein,et al. San Francisco, California , 2007 .
[49] P. Vachhani,et al. Robust and reliable estimation via Unscented Recursive Nonlinear Dynamic Data Reconciliation , 2006 .
[50] P. Fearnhead,et al. Improved particle filter for nonlinear problems , 1999 .
[51] James B. Rawlings,et al. Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..
[52] Leonardo A. B. Tôrres,et al. On unscented Kalman filtering with state interval constraints , 2010 .