Saturated Particle Filter: Almost sure convergence and improved resampling

Nonlinear stochastic dynamical systems are widely used to model physical processes. In many practical applications, the state variables are defined on a compact set of the state space, i.e., they are bounded or saturated. To estimate the states of systems with saturated variables, the Saturated Particle Filter (SPF) has recently been developed. This filter exploits the structure of the saturated system using a specific importance sampling distribution. In this paper we investigate the asymptotic properties of the filter, in particular its almost sure convergence to the true posterior PDF. Furthermore, an improved SPF is developed that uses a novel resampling procedure to overcome the practical shortcomings of the original SPF. We prove that this new filter also converges almost surely to the true posterior PDF. Both versions of the SPF are presented in easy to implement algorithmic forms.

[1]  Dominic S. Lee,et al.  A particle algorithm for sequential Bayesian parameter estimation and model selection , 2002, IEEE Trans. Signal Process..

[2]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[3]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[4]  Biao Huang,et al.  Constrained Bayesian state estimation – A comparative study and a new particle filter based approach , 2010 .

[5]  Hisashi Tanizaki,et al.  Nonlinear and non-Gaussian state-space modeling with Monte Carlo simulations , 1998 .

[6]  G. Eyink,et al.  Ensemble Filtering for Nonlinear Dynamics , 2003 .

[7]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[8]  Robert Babuska,et al.  Saturated particle filter , 2011, Proceedings of the 2011 American Control Conference.

[9]  Robert Babuska,et al.  Particle filters for estimating average grain diameter of material excavated by hopper dredger , 2010, 2010 IEEE International Conference on Control Applications.

[10]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[11]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[12]  G. Kitagawa Theory and Methods , 1998 .

[13]  F. Simonot CONVERGENCE RATE FOR THE DISTRIBUTIONS OF GI/M/1/n AND M/GI/1/n AS n TENDS TO INFINITY , 1997 .

[14]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[15]  A. Papandreou-Suppappola,et al.  A Particle Filtering Approach To Constrained Motion Estimation In Tracking Multiple Targets , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[16]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[17]  Herman Bruyninckx,et al.  Kalman filters for non-linear systems: a comparison of performance , 2004 .

[18]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[19]  Prem K. Goel,et al.  Bayesian estimation via sequential Monte Carlo sampling - Constrained dynamic systems , 2007, Autom..

[20]  Dennis S. Bernstein,et al.  Unscented filtering for interval-constrained nonlinear systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[21]  Geo. R. Lawrence Co. Pacific Grove, California , 1906 .

[22]  Wolfgang Stadje A new approach to the Lindley recursion , 1997 .

[23]  Petar M. Djuric,et al.  Gaussian sum particle filtering , 2003, IEEE Trans. Signal Process..

[24]  Sirish L. Shah,et al.  Constrained Nonlinear State Estimation Using Ensemble Kalman Filters , 2010 .

[25]  Ondrej Straka,et al.  Truncation nonlinear filters for state estimation with nonlinear inequality constraints , 2012, Autom..

[26]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[27]  Hisashi Tanizaki,et al.  Nonlinear Filters: Estimation and Applications , 1993 .

[28]  Robert J. Elliott,et al.  Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature , 2007, Proceedings of the IEEE.

[29]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[30]  G. Kitagawa Non-Gaussian state space modeling of time series , 1987, 26th IEEE Conference on Decision and Control.

[31]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[32]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[33]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[34]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[35]  Ivo J.B.F. Adan,et al.  A LINDLEY-TYPE EQUATION ARISING FROM A CAROUSEL PROBLEM , 2004 .

[36]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[37]  H. Kunsch Recursive Monte Carlo filters: Algorithms and theoretical analysis , 2006, math/0602211.

[38]  Jeffrey K. Uhlmann,et al.  Corrections to "Unscented Filtering and Nonlinear Estimation" , 2004, Proc. IEEE.

[39]  Hisashi Tanizaki,et al.  Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration , 1994 .

[40]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[41]  S. Julier,et al.  A General Method for Approximating Nonlinear Transformations of Probability Distributions , 1996 .

[42]  Yingmin Jia,et al.  An Improvement on Resampling Algorithm of Particle Filters , 2010, IEEE Transactions on Signal Processing.

[43]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[44]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[45]  Miroslav Simandl,et al.  Truncated unscented particle filter , 2011, Proceedings of the 2011 American Control Conference.

[46]  G. Kitagawa A self-organizing state-space model , 1998 .

[47]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[48]  Pau Klein,et al.  San Francisco, California , 2007 .

[49]  P. Vachhani,et al.  Robust and reliable estimation via Unscented Recursive Nonlinear Dynamic Data Reconciliation , 2006 .

[50]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[51]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..

[52]  Leonardo A. B. Tôrres,et al.  On unscented Kalman filtering with state interval constraints , 2010 .