Output feedback receding horizon control of constrained systems

This paper considers output feedback control of linear discrete-time systems with convex state and input constraints which are subject to bounded state disturbances and output measurement errors. We show that the non-convex problem of finding a constraint admissible affine output feedback policy over a finite horizon, to be used in conjunction with a fixed linear state observer, can be converted to an equivalent convex problem. When used in the design of a time-varying robust receding horizon control law, we derive conditions under which the resulting closed-loop system is guaranteed to satisfy the system constraints for all time, given an initial state estimate and bound on the state estimation error. When the state estimation error bound matches the minimal robust positively invariant (mRPI) set for the system error dynamics, we show that this control law is time-invariant, but its calculation generally requires solution of an infinite-dimensional optimization problem. Finally, using an invariant outer approximation to the mRPI error set, we develop a time-invariant control law that can be computed by solving a finite-dimensional tractable optimization problem at each time step that guarantees that the closed-loop system satisfies the constraints for all time.

[1]  Hernan Haimovich,et al.  On optimal control of constrained linear systems with imperfect state information and stochastic disturbances , 2004 .

[2]  David Q. Mayne,et al.  Robust model predictive control of constrained linear systems with bounded disturbances , 2005, Autom..

[3]  J. Löfberg,et al.  Approximations of closed-loop minimax MPC , 2003, CDC.

[4]  A. Richards,et al.  Robust model predictive control with imperfect information , 2005, Proceedings of the 2005, American Control Conference, 2005..

[5]  Diederich Hinrichsen,et al.  Control of Uncertain Systems , 1990 .

[6]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[7]  David Q. Mayne,et al.  REGULATION OF DISCRETE-TIME LINEAR SYSTEMS WITH POSITIVE STATE AND CONTROL CONSTRAINTS AND BOUNDED DISTURBANCES , 2005 .

[8]  Jianming Lian,et al.  Control of Uncertain Systems , 2009, Handbook of Automation.

[9]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[10]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[11]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[12]  O. Bosgra,et al.  Stochastic closed-loop model predictive control of continuous nonlinear chemical processes , 2006 .

[13]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems , 2006, Autom..

[14]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[15]  L. Chisci,et al.  Feasibility in predictive control of constrained linear systems: the output feedback case , 2002 .

[16]  J. Rawlings,et al.  A new robust model predictive control method I: theory and computation , 2004 .

[17]  J. Aplevich,et al.  Lecture Notes in Control and Information Sciences , 1979 .

[18]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[19]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[20]  T. Alamo,et al.  A convex parameterization for solving constrained min-max problems with a quadratic cost , 2004, Proceedings of the 2004 American Control Conference.

[21]  H. Witsenhausen A minimax control problem for sampled linear systems , 1968 .

[22]  B. Kouvaritakis,et al.  Receding horizon output feedback control for linear systems with input saturation , 2001 .

[23]  D. Bertsekas,et al.  Sufficiently informative functions and the minimax feedback control of uncertain dynamic systems , 1973 .

[24]  Luigi Chisci,et al.  Systems with persistent disturbances: predictive control with restricted constraints , 2001, Autom..

[25]  A. Garulli,et al.  Output-feedback predictive control of constrained linear systems via set-membership state estimation , 2000 .

[26]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[27]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[28]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[29]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[30]  Stephen P. Boyd,et al.  Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems , 2006, Math. Program..

[31]  Ilya Kolmanovsky,et al.  Fast reference governors for systems with state and control constraints and disturbance inputs , 1999 .

[32]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[33]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[34]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[35]  David Q. Mayne,et al.  Robust model predictive control using tubes , 2004, Autom..

[36]  D. Mayne,et al.  Invariant approximations of robustly positively invariant sets for constrained linear discrete-time systems subject to bounded disturbances , 2004 .

[37]  Jun Yan,et al.  Incorporating state estimation into model predictive control and its application to network traffic control , 2005, Autom..

[38]  Marko Bacic,et al.  Model predictive control , 2003 .

[39]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[40]  Jeff S. Shamma,et al.  Output feedback control for systems with constraints and saturations: scalar control case , 1998 .

[41]  N. S. Patel,et al.  Robust control of set-valued discrete-time dynamical systems , 1998, IEEE Trans. Autom. Control..

[42]  B. Kouvaritakis,et al.  Constrained receding horizon predictive control for systems with disturbances , 1999 .

[43]  Jeff S. Shamma,et al.  Set-valued observers and optimal disturbance rejection , 1999, IEEE Trans. Autom. Control..

[44]  Mario Sznaier,et al.  Mixed l1/H∞ control of MIMO systems via convex optimization , 1998, IEEE Trans. Autom. Control..

[45]  Elana Guslitser UNCERTAINTY- IMMUNIZED SOLUTIONS IN LINEAR PROGRAMMING , 2002 .

[46]  David K. Smith,et al.  Dynamic Programming and Optimal Control. Volume 1 , 1996 .

[47]  Alberto Bemporad,et al.  Reducing conservativeness in predictive control of constrained systems with disturbances , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[48]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..