A new convergence proof for the higher-order power method and generalizations

A proof for the point-wise convergence of the factors in the higher-order power method for tensors towards a critical point is given. It is obtained by applying established results from the theory of \L{}ojasiewicz inequalities to the equivalent, unconstrained alternating least squares algorithm for best rank-one tensor approximation.

[1]  P. Comon,et al.  Higher-order power method - application in independent component analysis , 1995 .

[2]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[3]  Phillip A. Regalia,et al.  The higher-order power method revisited: convergence proofs and effective initialization , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[4]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[5]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[6]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[7]  Robert E. Mahony,et al.  Convergence of the Iterates of Descent Methods for Analytic Cost Functions , 2005, SIAM J. Optim..

[8]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[9]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[10]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[11]  A. Levitt Convergence of gradient-based algorithms for the Hartree-Fock equations∗ , 2011, 1109.5473.

[12]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[13]  W. Marsden I and J , 2012 .

[14]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[15]  André Uschmajew,et al.  Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..

[16]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[17]  Christine Tobler,et al.  Low-rank tensor methods for linear systems and eigenvalue problems , 2012 .

[18]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[19]  Martin J. Mohlenkamp Musings on multilinear fitting , 2013 .

[20]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[21]  André Uschmajew,et al.  On Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format , 2013, SIAM J. Numer. Anal..

[22]  Liqi Wang,et al.  On the Global Convergence of the Alternating Least Squares Method for Rank-One Approximation to Generic Tensors , 2014, SIAM J. Matrix Anal. Appl..

[23]  André Uschmajew,et al.  On Convergence of the Maximum Block Improvement Method , 2015, SIAM J. Optim..

[24]  Reinhold Schneider,et al.  Convergence Results for Projected Line-Search Methods on Varieties of Low-Rank Matrices Via Łojasiewicz Inequality , 2014, SIAM J. Optim..