From the lavas to the gabbros: 1.25 km of geochemical characterization of upper oceanic crust at ODP/IODP Site 1256, eastern equatorial Pacific

[1]  Tianyu Chen,et al.  Upper ocean vertical supply: A neglected primary factor controlling the distribution of neodymium concentrations of open ocean surface waters? , 2013 .

[2]  D. Garbe‐Schönberg,et al.  Influence of the Galápagos hotspot on the East Pacific Rise during Miocene superfast spreading , 2013 .

[3]  John F. Casey,et al.  Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256 , 2012 .

[4]  D. Teagle,et al.  IODP expedition 335: Deep sampling in ODP hole 1256D , 2012 .

[5]  K. Gillis,et al.  Mineralogical and strontium isotopic record of hydrothermal processes in the lower ocean crust at and near the East Pacific Rise , 2012, Contributions to Mineralogy and Petrology.

[6]  M. Hannington,et al.  The abundance of seafloor massive sulfide deposits , 2011 .

[7]  K. Haase,et al.  On- and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean-Ridge (5–11°S): Shallow or deep recycling of ocean crust and/or intraplate volcanism? , 2011 .

[8]  T. Sano,et al.  Petrological relationships among lavas, dikes, and gabbros from Integrated Ocean Drilling Program Hole 1256D: Insight into the magma plumbing system beneath the East Pacific Rise , 2011 .

[9]  J. Kimura,et al.  The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-recycling Model for HIMU OIB , 2011 .

[10]  N. Banerjee,et al.  Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256 , 2010 .

[11]  Keikichi G. Nakamura,et al.  The MoHole: a Crustal Journey and Mantle Quest , 2010 .

[12]  Kenneth H. Rubin,et al.  Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′N–9°56′N: Implications for ridge crest plumbing and decadal changes in magma chamber compositions , 2010 .

[13]  Wang Xiaoyuan,et al.  Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13°N , 2010 .

[14]  M. Perfit,et al.  Perspective on the Genesis of E-MORB from Chemical and Isotopic Heterogeneity at 9–10°N East Pacific Rise , 2009 .

[15]  D. Garbe‐Schönberg,et al.  Geochemical variations in the Cocos Plate subducting beneath Central America: implications for the composition of arc volcanism and the extent of the Galápagos Hotspot influence on the Cocos oceanic crust , 2009 .

[16]  D. Teagle,et al.  Determination of the volcanostratigraphy of oceanic crust formed at superfast spreading ridge: Electrofacies analyses of ODP/IODP Hole 1256D , 2009 .

[17]  N. Banerjee,et al.  Boron and chlorine contents of upper oceanic crust: Basement samples from IODP Hole 1256D , 2008 .

[18]  R. Klemd,et al.  Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China) , 2008 .

[19]  W. Strauch,et al.  Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua , 2008, Nature.

[20]  G. C. Allen,et al.  Aqueous uptake of uranium onto pyrite surfaces; reactivity of fresh versus weathered material , 2007 .

[21]  F. Hauff,et al.  Boron isotope geochemistry and U–Pb systematics of altered MORB from the Australian Antarctic Discordance (ODP Leg 187) , 2007 .

[22]  M. Kurz,et al.  The role of lithospheric gabbros on the composition of Galapagos lavas , 2007 .

[23]  K. Cooper Data Report: Trace element analyses in whole-rock basement samples, Site 1256, ODP Leg 206 , 2007 .

[24]  K. Hoernle,et al.  Origin and geochemical evolution of the Madeira-Tore Rise (eastern North Atlantic) , 2006 .

[25]  N. Banerjee,et al.  Expedition 309/312 summary , 2006 .

[26]  A. Hofmann,et al.  GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards , 2005 .

[27]  Katherine A. Kelley,et al.  Subduction cycling of U, Th, and Pb , 2005 .

[28]  A. Hofmann,et al.  FOZO, HIMU, and the rest of the mantle zoo , 2005 .

[29]  G. Faure,et al.  Isotopes: Principles and Applications , 2004 .

[30]  F. Hauff,et al.  Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m.y.: Constraints from morphology, geochemistry, and magnetic anomalies , 2003 .

[31]  J. Blichert‐Toft,et al.  Pb‐Hf‐Nd‐Sr isotope variations along the Galápagos Spreading Center (101°–83°W): Constraints on the dispersal of the Galápagos mantle plume , 2003 .

[32]  D. Fornari,et al.  Aberrant youth: Chemical and isotopic constraints on the origin of off‐axis lavas from the East Pacific Rise, 9°–10°N , 2003 .

[33]  B. Peucker‐Ehrenbrink,et al.  Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B – Implications for seawater‐crust exchange budgets and Sr‐ and Pb‐isotopic evolution of the mantle , 2003 .

[34]  V. Salters,et al.  Recycling oceanic crust: Quantitative constraints , 2003 .

[35]  B. Peucker‐Ehrenbrink,et al.  Correction to “Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B – Implications for seawater‐crust exchange budgets and Sr‐ and Pb‐isotopic evolution of the mantle” , 2003 .

[36]  Martine C. Duff,et al.  Uranium Co-precipitation with Iron Oxide Minerals , 2002 .

[37]  D. Fornari,et al.  Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise , 2002 .

[38]  Martin Frank,et al.  RADIOGENIC ISOTOPES: TRACERS OF PAST OCEAN CIRCULATION AND EROSIONAL INPUT , 2002 .

[39]  H. Furnes,et al.  Nd- and Pb-isotopic variations through the upper oceanic crust in DSDP/ODP Hole 504B, Costa Rica Rift , 2001 .

[40]  K. Hoernle Geochemistry of Jurassic Oceanic Crust beneath Gran Canaria (Canary Islands): Implications for Crustal Recycling and Assimilation , 1998 .

[41]  Everett L. Shock,et al.  Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures , 1997 .

[42]  Walter H. F. Smith,et al.  Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings , 1997 .

[43]  C. Devey,et al.  On the redistribution of Pb in the oceanic crust during hydrothermal alteration , 1997 .

[44]  S. Nakano,et al.  Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts , 1997 .

[45]  F. Albarède,et al.  The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system , 1997 .

[46]  K. Ragnarsdóttir,et al.  Controls on uranium and thorium behaviour in ocean-floor hydrothermal systems: examples from the Pindos ophiolite, Greece , 1997 .

[47]  Douglas S. Wilson Fastest known spreading on the Miocene Cocos‐Pacific Plate Boundary , 1996 .

[48]  S. Goldstein,et al.  Hydration and dehydration of oceanic crust controls Pb evolution in the mantle , 1995 .

[49]  S. Clemens,et al.  Improved chronostratigraphic reference curve of late Neogene seawater , 1995 .

[50]  D. W. Harris,et al.  Interaction between aqueous uranium (VI) and sulfide minerals: Spectroscopic evidence for sorption and reduction , 1994 .

[51]  D. Hodell,et al.  Variations in the strontium isotopic ratio of seawater during the Miocene: Stratigraphic and geochemical implications , 1994 .

[52]  A. McBirney,et al.  Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume , 1993 .

[53]  C. Garbe-Schönberg SIMULTANEOUS DETERMINATION OF THIRTY‐SEVEN TRACE ELEMENTS IN TWENTY‐EIGHT INTERNATIONAL ROCK STANDARDS BY ICP‐MS , 1993 .

[54]  B. Weaver The origin of ocean island basalt end-member compositions: trace element and isotopic constraints , 1991 .

[55]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[56]  S. Hart,et al.  Heterogeneous mantle domains: signatures, genesis and mixing chronologies , 1988 .

[57]  Albrecht W. Hofmann,et al.  Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust , 1988 .

[58]  E. Ito,et al.  The O, Sr, Nd and Pb isotope geochemistry of MORB , 1987 .

[59]  J. Alt,et al.  Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater‐basalt interactions , 1986 .

[60]  D. Fornari,et al.  Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 3. Trace element abundances and petrogenesis , 1983 .

[61]  F. Albarède,et al.  Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 °N) , 1983, Nature.

[62]  K. Muehlenbachs,et al.  Alteration Processes in Layer 2 Basalts from Deep Sea Drilling Project Hole 504B, Costa Rica Rift , 1983 .

[63]  J.-F. Minster,et al.  Tracers in the Sea , 1982 .

[64]  S. Hart,et al.  The control of alkalies and uranium in seawater by ocean crust alteration , 1982 .

[65]  Albrecht W. Hofmann,et al.  Mantle plumes from ancient oceanic crust , 1982 .

[66]  J. Herman,et al.  The mobility of thorium in natural waters at low temperatures , 1980 .

[67]  D. Langmuir,et al.  Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits , 1978 .

[68]  R. Huene,et al.  Initial reports of the deep sea drilling project: National Science Foundation, Washington, D.C., 1969, 672 pp., U.S. $ 10.25 , 1971 .

[69]  J. E. Hawley,et al.  Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores , 1961 .

[70]  F. G. Houtermans Determination of the age of the earth from the isotopic composition of meteoritic lead , 1953 .

[71]  W. Bach,et al.  Metasomatism within the ocean crust , 2013 .

[72]  S. Miyashita,et al.  Data report: bulk rock compositions of samples from the IODP Expedition 309/312 sample pool, ODP Hole 1256D 1 , 2009 .

[73]  Sung Hyun Park,et al.  Did the Galápagos plume influence the ancient EPR? A geochemical study of basaltic rocks from Hole 1256D , 2008 .

[74]  D. Teagle,et al.  1. LEG 206 SYNTHESIS: INITIATION OF DRILLING AN INTACT SECTION OF UPPER OCEANIC CRUST FORMED AT A SUPERFAST SPREADING RATE AT SITE 1256 IN THE EASTERN EQUATORIAL PACIFIC , 2007 .

[75]  M. Hannington,et al.  Sea-floor tectonics and submarine hydrothermal systems , 2005 .

[76]  A. Klaus,et al.  Proceedings of the Ocean Drilling Program, Scientific Results , 2001 .

[77]  B. Kamber,et al.  Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts , 1997 .

[78]  R. Wilkens,et al.  Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific : A synthesis of results from Site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140, and 148) , 1996 .

[79]  D. Peate,et al.  Tectonic Implications of the Composition of Volcanic Arc Magmas , 1995 .

[80]  R. Chester Trace elements in the oceans , 1990 .

[81]  Masahiro Yamamoto,et al.  5. PETROLOGY AND ISOTOPE CHARACTERISTICS (H, O, S, Sr, AND Nd) OF BASALTS FROM OCEAN DRILLING PROGRAM HOLE 504B, LEG 111, COSTA RICA RIFT1 , 1989 .

[82]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[83]  A. Masuda,et al.  7. REE, Ba, AND Sr ABUNDANCES AND Sr, Nd, AND Ce ISOTOPIC RATIOS IN HOLE 504B BASALTS, ODP LEG 111, COSTA RICA RIFT1 , 1989 .

[84]  E. Saltzman,et al.  STOCKWORK-LIKE SULFIDE MINERALIZATION IN YOUNG OCEANIC CRUST. DEEP SEA DRILLING PROJECT HOLE 504B , 1985 .

[85]  G. Wasserburg,et al.  A neodymium, strontium, and oxygen isotopic study of the Cretaceous Samail ophiolite and implications for the petrogenesis and seawater-hydrothermal alteration of oceanic crust , 1980 .