Boundary conditions for stochastic solutions of the convection-diffusion equation.

Stochastic methods offer an attractively simple solution to complex transport-controlled problems, and have a wide range of physical, chemical, and biological applications. Stochastic methods do not suffer from the numerical diffusion that plagues grid-based methods, but they typically lose accuracy in the vicinity of interfacial boundaries. In this work we introduce some ideas and algorithms that can be used to implement boundary conditions in stochastic simulations of the convection-diffusion equation with accuracies comparable to the bulk phase. The algorithms have been tested in two-dimensional channel flows over a range of Peclet numbers, and compared with independent finite-difference calculations.

[1]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[2]  A. Ladd,et al.  Accuracy and stability of a lattice-Boltzmann model with subgrid scale boundary conditions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[4]  Pierre M. Adler,et al.  Taylor dispersion in porous media. Determination of the dispersion tensor , 1993 .

[5]  Particle-method solution of two-dimensional convection-diffusion equations , 1992 .

[6]  H. Risken Fokker-Planck Equation , 1984 .

[7]  R. Glowinski,et al.  Computing Methods in Applied Sciences and Engineering , 1974 .

[8]  Joseph F. Atkinson,et al.  Groundwater Flow And Quality Modeling , 2001 .

[9]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[10]  E. J. Hinch,et al.  Anomalous dispersion in a dipole flow geometry , 1994 .

[11]  E. Hinch,et al.  Echo tracer dispersion in model fractures with a rectangular geometry , 1994 .

[12]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[13]  M. Abbott An introduction to the method of characteristics , 1966 .

[14]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[15]  R. Zhang,et al.  Applied Contaminant Transport Modeling: Theory and Practice , 1991 .

[16]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[17]  J Koplik,et al.  Tracer dispersion in two-dimensional rough fractures. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  S. K. Fraley,et al.  A Monte Carlo Method of Solving Heat Conduction Problems , 1977 .

[19]  P. Degond,et al.  The weighted particle method for convection-diffusion equations , 1989 .

[20]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[21]  Stacy E. Howington,et al.  Pore-scale simulation of dispersion , 2000 .

[22]  Patrick J. Fox,et al.  A pore‐scale numerical model for flow through porous media , 1999 .

[23]  Ahmed F. Ghoniem,et al.  Grid-free simulation of diffusion using random walk methods , 1985 .

[24]  D. I. Golenko,et al.  The Monte Carlo Method. , 1967 .

[25]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[26]  A. Haki-Sheikh,et al.  Solution of heat conduction problems by probability methods , 1967 .

[27]  S. P. Neuman Adaptive Eulerian–Lagrangian finite element method for advection–dispersion , 1984 .

[28]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[29]  F. Keil Stochastic Processes in Polymeric Fluids. Springer Verlag, Heidelberg 1996,362 Seiten, 34 Abb., 3 Tab., brosch., DM 98,‐. ISBN 3‐540‐58353‐X. , 1997 .

[30]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .