Duality of Besov, Triebel–Lizorkin and Herz spaces with variable exponents

[1]  T. Noi Fourier multiplier theorems for Besov and Triebel-Lizorkin spaces with variable exponents , 2014 .

[2]  Alberto Fiorenza,et al.  Variable Lebesgue Spaces: Foundations and Harmonic Analysis , 2013 .

[3]  Alberto Fiorenza,et al.  Variable Lebesgue Spaces , 2013 .

[4]  A. Almeida,et al.  Maximal, potential and singular type operators on Herz spaces with variable exponents , 2012 .

[5]  D. Drihem Atomic decomposition of Besov spaces with variable smoothness and integrability , 2012 .

[6]  Y. Sawano,et al.  Complex interpolation of Besov spaces and Triebel–Lizorkin spaces with variable exponents , 2012 .

[7]  T. Noi Duality of Variable Exponent Triebel-Lizorkin and Besov Spaces , 2012 .

[8]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[9]  J. Vybíral,et al.  A note on the spaces of variable integrability and summability of Almeida and Hästö , 2011, 1102.1597.

[10]  M. Izuki,et al.  Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents , 2011 .

[11]  M. Izuki Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent , 2010 .

[12]  M. Izuki Vector-valued inequalities on herz spaces and characterizations of herz-sobolev spaces with variable exponent , 2010 .

[13]  Henning Kempka Atomic, molecular and wavelet decomposition of 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability , 2010 .

[14]  M. Izuki Fractional integrals on Herz-Morrey spaces with variable exponent , 2010 .

[15]  M. Izuki Boundedness of commutators on Herz spaces with variable exponent , 2010 .

[16]  M. Izuki Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization , 2010 .

[17]  P. Hästö,et al.  Besov spaces with variable smoothness and integrability , 2010 .

[18]  M. Izuki Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system , 2009 .

[19]  P. Hästö,et al.  MAXIMAL FUNCTIONS IN VARIABLE EXPONENT SPACES: LIMITING CASES OF THE EXPONENT , 2009 .

[20]  S. Roudenko,et al.  Function spaces of variable smoothness and integrability , 2007, 0711.2354.

[21]  J. Rodrigues,et al.  On stationary thermo-rheological viscous flows , 2006 .

[22]  D. Cruz-Uribe,et al.  THE BOUNDEDNESS OF CLASSICAL OPERATORS ON VARIABLE L p SPACES , 2006 .

[23]  L. Diening Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$ , 2004 .

[24]  L. Diening,et al.  Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics , 2003 .

[25]  Xianling Fan,et al.  On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .

[26]  E. Hernández,et al.  Interpolation of Herz Spaces and Applications , 1999 .

[27]  Kumbakonam R. Rajagopal,et al.  On the modeling of electrorheological materials , 1996 .

[28]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[29]  H. Triebel Spaces of distributions of Besov type on Euclideann-space. Duality, interpolation , 1973 .

[30]  W. Orlicz,et al.  Über konjugierte Exponentenfolgen , 1931 .