Spatiotemporal inseparability in early visual processing

We examine the implications of significant inseparable behaviour in centre-surround retinal cell types. From the form of a spatiotemporal centre-surround (CS) model which agrees qualitatively with physiological observations, we find that the sustained/transient dichotomy is a poor distinction for X-type/Y-type retinal ganglion cells since both exhibit inseparability. Static centre-surround models and spatiotemporal separable models are not valid for time-varying stimuli. Our results contradict the models for X- and Y-type ganglion cells proposed by Marr and Hildreth (1980) and Marr and Ullman (1981), and raise doubts about the physiological validity of Marr's zerocrossing theory. The CS filter is an attractive precursor to the extraction of 2-d motion information.

[1]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[2]  O. Schade Optical and photoelectric analog of the eye. , 1956, Journal of the Optical Society of America.

[3]  J. Mcilwain RECEPTIVE FIELDS OF OPTIC TRACT AXONS AND LATERAL GENICULATE CELLS: PERIPHERAL EXTENT AND BARBITURATE SENSITIVITY. , 1964, Journal of neurophysiology.

[4]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[5]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[6]  D. H. Kelly Frequency Doubling in Visual Responses , 1966 .

[7]  J. Robson Spatial and Temporal Contrast-Sensitivity Functions of the Visual System , 1966 .

[8]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[9]  M. A. Bouman,et al.  Spatiotemporal modulation transfer in the human eye. , 1967, Journal of the Optical Society of America.

[10]  J. Robson,et al.  Spatial-frequency channels in human vision. , 1971, Journal of the Optical Society of America.

[11]  W. Levick,et al.  Lateral geniculate neurons of cat: retinal inputs and physiology. , 1972, Investigative ophthalmology.

[12]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. , 1972, Journal of neurophysiology.

[13]  C. Enroth-Cugell,et al.  Properties of the surround response mechanism of cat retinal ganglion cells and centre‐surround interaction , 1972, The Journal of physiology.

[14]  J. Kulikowski,et al.  Spatial arrangement of line, edge and grating detectors revealed by subthreshold summation. , 1973, Vision research.

[15]  Z. L. Budrikis,et al.  Model approximations to visual spatio-temporal sine-wave threshold data , 1973 .

[16]  D. Tolhurst,et al.  Psychophysical evidence for sustained and transient detectors in human vision , 1973, The Journal of physiology.

[17]  W. Levick,et al.  Brisk and sluggish concentrically organized ganglion cells in the cat's retina , 1974, The Journal of physiology.

[18]  F. Werblin Control of Retinal Sensitivity II. Lateral Interactions at the Outer Plexiform Layer , 1974 .

[19]  P. Hammond Cat retinal ganglion cells: size and shape of receptive field centres , 1974, The Journal of physiology.

[20]  P Lennie,et al.  The control of retinal ganglion cell discharge by receptive field surrounds. , 1975, The Journal of physiology.

[21]  B. Fischer,et al.  Quantitative aspects of the shift-effect in cat retinal ganglion cells , 1975, Brain Research.

[22]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[23]  G L Gerstein,et al.  Spatiotemporal organization of cat lateral geniculate receptive fields. , 1976, Journal of neurophysiology.

[24]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  H. Wilson,et al.  Threshold visibility of frequency gradient patterns , 1977, Vision Research.

[26]  H. Barlow,et al.  The effects of remote retinal stimulation on the responses of cat retinal ganglion cells. , 1977, The Journal of physiology.

[27]  Tomaso Poggio,et al.  A Theory of Human Stereo Vision , 1977 .

[28]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[29]  R. Shapley,et al.  Receptive field mechanisms of cat X and Y retinal ganglion cells , 1979, The Journal of general physiology.

[30]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  J. Bergen,et al.  A four mechanism model for threshold spatial vision , 1979, Vision Research.

[32]  J P Frisby,et al.  Surfaces with Steep Variations in Depth Pose Difficulties for Orientationally Tuned Disparity Filters , 1979, Perception.

[33]  D. H. Kelly Motion and vision. II. Stabilized spatio-temporal threshold surface. , 1979, Journal of the Optical Society of America.

[34]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  P. Lennie Parallel visual pathways: A review , 1980, Vision Research.

[36]  P Lennie,et al.  Perceptual signs of parallel pathways. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  J. Crowley A representation for visual information , 1981 .

[39]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[40]  J. Robson,et al.  Discrimination at threshold: Labelled detectors in human vision , 1981, Vision Research.

[41]  J W McClurkin,et al.  Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  D. Burr,et al.  Contrast sensitivity at high velocities , 1982, Vision Research.

[44]  P. Lennie,et al.  The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat , 1982, The Journal of physiology.

[45]  K. Naka,et al.  The cells horizontal cells talk to , 1982, Vision Research.

[46]  C. Enroth-Cugell,et al.  Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements , 1982, Vision Research.

[47]  W. Levick,et al.  Bimodal receptive fields of cat retinal ganglion cells , 1983, Vision Research.

[48]  C. Enroth-Cugell,et al.  Spatio‐temporal interactions in cat retinal ganglion cells showing linear spatial summation. , 1983, The Journal of physiology.

[49]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[50]  D. J. Burr,et al.  Matching Elastic Templates , 1983 .

[51]  R. Shapley,et al.  The receptive field organization of X-cells in the cat: Spatiotemporal coupling and asymmetry , 1984, Vision Research.

[52]  D. H. Kelly Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[53]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  W. Mullikin,et al.  The spatiotemporal building blocks of X-, Y- and W-ganglion cell receptive fields of the cat's retina , 2004, Experimental Brain Research.

[55]  O. D. Creutzfeldt,et al.  A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey , 1979, Experimental Brain Research.

[56]  Responses to coloured patterns in the macaque lateral geniculate nucleus: Analysis of receptive field properties , 2004, Experimental Brain Research.

[57]  S. Ullman,et al.  A model for the temporal organization of X- and Y-type receptive fields in the primate retina , 2004, Biological Cybernetics.