Synthesis of polyethylene thermoplastic elastomer by using robust α‐diimine Ni( II ) catalysts with abundant t Bu substituents

[1]  Yihua Zhao,et al.  Reversion of the chain walking ability of α-diimine nickel and palladium catalysts with bulky diarylmethyl substituents , 2021 .

[2]  Shuaikang Li,et al.  Highly efficient incorporation of polar comonomers in copolymerizations with ethylene using iminopyridyl palladium system , 2021 .

[3]  Yixin Zhang,et al.  Unsymmetrical Strategy Makes Significant Differences in α‐Diimine Nickel and Palladium Catalyzed Ethylene (Co)Polymerizations , 2020 .

[4]  Shuaikang Li,et al.  A remote nonconjugated electron effect in insertion polymerization with α-diimine nickel and palladium species , 2020 .

[5]  Xuequan Zhang,et al.  Living coordination–insertion copolymerization of 1-hexene and ligated α-olefins using an α-diimine nickel catalyst and preparation of metal–ligand coordination crosslinked polymers , 2020 .

[6]  Changle Chen,et al.  Direct Synthesis of Polar Functionalized Polyethylene Thermoplastic Elastomer , 2020 .

[7]  Lihua Guo,et al.  Flexible cycloalkyl substituents in insertion polymerization with α-diimine nickel and palladium species , 2020 .

[8]  Wen‐Hua Sun,et al.  Attaining highly branched polyethylene elastomers by employing modified α-diiminonickel(II) catalysts: Probing the effects of enhancing fluorine atom on the ligand framework towards mechanical properties of polyethylene , 2020 .

[9]  Shuaikang Li,et al.  8-Arylnaphthyl substituent retarding chain transfer in insertion polymerization with unsymmetrical α-diimine systems , 2020 .

[10]  Binyuan Liu,et al.  π–π interaction effect in insertion polymerization with α-Diimine palladium systems , 2019, Journal of Catalysis.

[11]  Wenting Sun,et al.  Bulky yet flexible substituents in insertion polymerization with α-diimine nickel and palladium systems , 2019, Polymer Chemistry.

[12]  Anne M. LaPointe,et al.  Switchable living nickel(ii) α-diimine catalyst for ethylene polymerisation. , 2019, Chemical communications.

[13]  F. Bertini,et al.  (Micro)structure, thermal behavior and mechanical properties of ethylene–propylene–1-octadecene terpolymers from chain-walking polymerization of 1-octadecene , 2019, Polymer.

[14]  Z. Wang,et al.  Plastomeric-like polyethylenes achievable using thermally robust N,N'-nickel catalysts appended with electron withdrawing difluorobenzhydryl and nitro groups. , 2019, Dalton transactions.

[15]  H. Plenio,et al.  Bispentiptycenyl–Diimine–Nickel Complexes for Ethene Polymerization and Copolymerization with Polar Monomers , 2019, Organometallics.

[16]  Changle Chen,et al.  Palladium-Catalyzed Direct Synthesis of Various Branched, Carboxylic Acid-Functionalized Polyolefins: Characterization, Derivatization, and Properties , 2018, Macromolecules.

[17]  Changle Chen,et al.  Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization , 2018 .

[18]  M. Brookhart,et al.  Exploring Ethylene/Polar Vinyl Monomer Copolymerizations Using Ni and Pd α-Diimine Catalysts. , 2018, Accounts of chemical research.

[19]  Shuai Xu,et al.  Synthesis of Various Branched Ultra-High-Molecular-Weight Polyethylenes Using Sterically Hindered Acenaphthene-Based α-Diimine Ni(II) Catalysts , 2018, Organometallics.

[20]  Changle Chen,et al.  Direct Synthesis of Polar-Functionalized Linear Low-Density Polyethylene (LLDPE) and Low-Density Polyethylene (LDPE) , 2018 .

[21]  Qing-Shan Li,et al.  Chain-Walking Polymerization of Linear Internal Octenes Catalyzed by α-Diimine Nickel Complexes , 2018 .

[22]  Yuliang Yang,et al.  Large-scale synthesis of novel sterically hindered acenaphthene-based α-diimine ligands and their application in coordination chemistry , 2018 .

[23]  E. Parisini,et al.  Chain-Walking Polymerization of α-Olefins by α-Diimine Ni(II) Complexes: Effect of Reducing the Steric Hindrance of Ortho- and Para-Aryl Substituents on the Catalytic Behavior, Monomer Enchainment, and Polymer Properties , 2018 .

[24]  B. Long,et al.  High Temperature, Living Polymerization of Ethylene by a Sterically-Demanding Nickel(II) α-Diimine Catalyst , 2018, Polymers.

[25]  Min Chen,et al.  Ligand steric effects on α-diimine nickel catalyzed ethylene and 1-hexene polymerization , 2017 .

[26]  Yun-peng Zhu,et al.  Direct Synthesis of Thermoplastic Polyolefin Elastomers from Nickel-Catalyzed Ethylene Polymerization , 2017 .

[27]  F. Bertini,et al.  Polyolefin thermoplastic elastomers from 1-octene copolymerization with 1-decene and cyclopentene , 2017 .

[28]  Qing Wu,et al.  Precision Synthesis of Ethylene and Polar Monomer Copolymers by Palladium-Catalyzed Living Coordination Copolymerization , 2017 .

[29]  Wen‐Hua Sun,et al.  Judiciously balancing steric and electronic influences on 2,3‐diiminobutane‐based Pd(II) complexes in nourishing polyethylene properties , 2017 .

[30]  W. Zhang,et al.  Systematic Investigations of Ligand Steric Effects on α-Diimine Palladium Catalyzed Olefin Polymerization and Copolymerization , 2016 .

[31]  Changle Chen,et al.  Direct Synthesis of Functionalized High-Molecular-Weight Polyethylene by Copolymerization of Ethylene with Polar Monomers. , 2016, Angewandte Chemie.

[32]  F. Bertini,et al.  Polyolefin thermoplastic elastomers from 1-octene chain-walking polymerization , 2016 .

[33]  Anne M. LaPointe,et al.  Controlled Chain Walking for the Synthesis of Thermoplastic Polyolefin Elastomers: Synthesis, Structure, and Properties , 2016 .

[34]  G. Coates,et al.  Semi-Crystalline Polar Polyethylene: Ester-Functionalized Linear Polyolefins Enabled by a Functional-Group-Tolerant, Cationic Nickel Catalyst. , 2016, Angewandte Chemie.

[35]  Rolf Mülhaupt,et al.  From Multisite Polymerization Catalysis to Sustainable Materials and All-Polyolefin Composites. , 2016, Chemical reviews.

[36]  Lihua Guo,et al.  Palladium and Nickel Catalyzed Chain Walking Olefin Polymerization and Copolymerization , 2016 .

[37]  Changle Chen,et al.  Highly Robust Palladium(II) α-Diimine Catalysts for Slow-Chain-Walking Polymerization of Ethylene and Copolymerization with Methyl Acrylate. , 2015, Angewandte Chemie.

[38]  F. Bertini,et al.  Ni(II) α-Diimine-Catalyzed α-Olefins Polymerization: Thermoplastic Elastomers of Block Copolymers , 2015 .

[39]  O. Daugulis,et al.  Living Polymerization of Ethylene and Copolymerization of Ethylene/Methyl Acrylate Using “Sandwich” Diimine Palladium Catalysts , 2015 .

[40]  S. Mecking,et al.  Post-metallocenes in the industrial production of polyolefins. , 2014, Angewandte Chemie.

[41]  B. Long,et al.  Enhancing α-Diimine Catalysts for High-Temperature Ethylene Polymerization , 2014 .

[42]  B. Long,et al.  A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. , 2013, Journal of the American Chemical Society.

[43]  P. Hustad,et al.  Frontiers in Olefin Polymerization: Reinventing the World’s Most Common Synthetic Polymers , 2009, Science.

[44]  Othmar Marti,et al.  New nickel(II) diimine complexes and the control of polyethylene microstructure by catalyst design. , 2007, Journal of the American Chemical Society.

[45]  J. Ziller,et al.  Cyclophane-based highly active late-transition-metal catalysts for ethylene polymerization. , 2004, Angewandte Chemie.

[46]  M. Brookhart,et al.  Late-metal catalysts for ethylene homo- and copolymerization. , 2000, Chemical reviews.

[47]  McLain,et al.  Chain walking: A new strategy to control polymer topology , 1999, Science.

[48]  Maurice Brookhart,et al.  New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins , 1995 .