Optimum design of frames with multiple constraints using an evolutionary method

Abstract This paper presents a simple evolutionary method for the optimum design of structures with stress, stiffness and stability constraints. The evolutionary structural optimization method is based on the concept of slowly removing the inefficient material and/or gradually shifting the material from the strongest part of the structure to the weakest part until the structure evolves towards the desired optimum. The iterative method presented here involves two steps. In the first step, the design variables are scaled uniformly to satisfy the most critical constraint. In the second step, a sensitivity number is calculated for each element depending on its influence on the strength, stiffness and buckling load of the structure. Based on the element sensitivity number, material is shifted from the strongest to the weakest part of the structure. These two steps are repeated in cycles until the desired optimum design is obtained. Illustrative examples are given to show the applicability of the method to the optimum design of frames and trusses with a large number of design variables.