Materials, Innovations and Future Research Opportunities on Wind Turbine Blades—Insight Review

[1]  Paul M. Weaver,et al.  Review of morphing concepts and materials for wind turbine blade applications , 2013 .

[2]  Lars C. T. Overgaard,et al.  A methodology for the structural analysis of composite wind turbine blades under geometric and material induced instabilities , 2010 .

[3]  Marcelo Reggio,et al.  Issues concerning roughness on wind turbine blades , 2013 .

[4]  M. Skrifvars,et al.  Preparation of thermoset composites from natural fibres and acrylate modified soybean oil resins , 2009 .

[5]  M. Schramm,et al.  The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations , 2017 .

[6]  M. Farzaneh,et al.  Anti-icing performance of superhydrophobic surfaces , 2011 .

[7]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[8]  J. Ding,et al.  Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane. , 2013, ACS applied materials & interfaces.

[9]  Hak-Gu Lee,et al.  Static test until structural collapse after fatigue testing of a full-scale wind turbine blade , 2016 .

[10]  M. Farzaneh,et al.  Advanced Icephobic Coatings , 2011 .

[11]  Paul M. Weaver,et al.  A shape adaptive airfoil for a wind turbine blade , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[12]  S. Frandsen Turbulence and turbulence-generated structural loading in wind turbine clusters , 2007 .

[13]  Yoh Yasuda,et al.  Classification of lightning damage to wind turbine blades , 2012 .

[14]  Walter Musial,et al.  Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades , 2003 .

[15]  Icephobic PTFE coatings for wind turbines operating in cold climate conditions , 2009, 2009 IEEE Electrical Power & Energy Conference (EPEC).

[16]  Lei Zhang,et al.  Overall design optimization of dedicated outboard airfoils for horizontal axis wind turbine blades , 2018 .

[17]  B. Amirzadeh,et al.  A computational framework for the analysis of rain-induced erosion in wind turbine blades, part I: Stochastic rain texture model and drop impact simulations , 2017 .

[18]  Julián Sierra-Pérez,et al.  Structural design of carbon/epoxy bio‐inspired wind turbine blade using fluid/structure simulation , 2016 .

[19]  P. Brøndsted,et al.  Biobased composites: materials, properties and potential applications as wind turbine blade materials , 2013 .

[20]  W. D Brouwer,et al.  Vacuum injection moulding for large structural applications , 2003 .

[21]  Lei Jiang,et al.  Bio-inspired strategies for anti-icing. , 2014, ACS nano.

[22]  T. M. Young,et al.  On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating–Laminate Adhesion on Rain Erosion Performance , 2017, Materials.

[23]  Joanna Aizenberg,et al.  Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). , 2013, Physical chemistry chemical physics : PCCP.

[24]  Chandra Veer Singh,et al.  Development of a physics-based multi-scale progressive damage model for assessing the durability of wind turbine blades , 2016 .

[25]  Fermín Mallor,et al.  Global sensitivity analysis of the blade geometry variables on the wind turbine performance , 2017 .

[26]  Wensong Zhou,et al.  Ice monitoring of a full‐scale wind turbine blade using ultrasonic guided waves under varying temperature conditions , 2018 .

[27]  R. Carriveau,et al.  A review of surface engineering issues critical to wind turbine performance , 2009 .

[28]  E. Lund,et al.  Structural collapse of a wind turbine blade. Part B: Progressive interlaminar failure models , 2010 .

[29]  M. Kang,et al.  Fatigue failure of a composite wind turbine blade at its root end , 2015 .

[30]  N. Bruns,et al.  Self‐Reporting Fiber‐Reinforced Composites That Mimic the Ability of Biological Materials to Sense and Report Damage , 2018, Advanced materials.

[31]  E. V. D. Heide,et al.  Leading edge erosion of coated wind turbine blades: Review of coating life models , 2015 .

[32]  M. Ramachandra,et al.  Advanced materials for wind turbine blade- A Review , 2018 .

[33]  Thomas D. Ashwill,et al.  Alternative Composite Materials for Megawatt-Scale Wind Turbine Blades: Design Considerations and Recommended Testing , 2003 .

[34]  Paul M. Weaver,et al.  The Brazier effect in wind turbine blades and its influence on design , 2012 .

[35]  David Wood,et al.  Aero-structural design and optimization of a small wind turbine blade , 2016 .

[36]  Aleksandar Bengin,et al.  Harmonization of new wind turbine rotor blades development process: A review , 2014 .

[37]  Qiqi Tian,et al.  Effects of nano-fluorocarbon coating on icing , 2012 .

[38]  C. Masson,et al.  Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis , 2016 .

[39]  D. M. Knowles,et al.  The effect of material behaviour on the analysis of single crystal turbine blades: Part I: Material model , 2002 .

[40]  Peng-Cheng Ma,et al.  Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials , 2014 .

[41]  K. Cox,et al.  Effects of composite fiber orientation on wind turbine blade buckling resistance , 2014 .

[42]  W. M. Banks,et al.  Bubble free resin for infusion process , 2005 .

[43]  Xiao Chen,et al.  Experimental investigation on structural collapse of a large composite wind turbine blade under combined bending and torsion , 2017 .

[44]  Steffen Laustsen,et al.  Wind turbine blade coating leading edge rain erosion model: Development and validation , 2018, Wind Energy.

[45]  D. Shah Natural fibre composites: Comprehensive Ashby-type materials selection charts , 2014 .

[46]  Ole Thybo Thomsen,et al.  Sandwich Materials for Wind Turbine Blades — Present and Future , 2009 .

[47]  L. Mishnaevsky,et al.  Materials for Wind Turbine Blades: An Overview , 2017, Materials.

[48]  C. Kong,et al.  Structural investigation of composite wind turbine blade considering various load cases and fatigue life , 2005 .

[49]  Lucy Y. Pao,et al.  Direct ice sensing and localized closed-loop heating for active de-icing of wind turbine blades , 2013, 2013 American Control Conference.

[50]  John F. Mandell,et al.  Fatigue of Composite Material Beam Elements Representative of Wind Turbine Blade Substructure , 1998 .

[51]  Alessandro Corsini,et al.  Computational analysis of wind-turbine blade rain erosion , 2016 .

[52]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[53]  Olivier Parent,et al.  Anti-icing and de-icing techniques for wind turbines: Critical review , 2011 .

[54]  Marc R. Schultz,et al.  A Concept for Airfoil-like Active Bistable Twisting Structures , 2008 .

[55]  A. Lystrup,et al.  Composite materials for wind power turbine blades , 2005 .

[56]  Paul J. Hogg,et al.  Novel materials and modelling for large wind turbine blades , 2010 .

[57]  Poul Henning Kirkegaard,et al.  Cost‐effective shaft torque observer for condition monitoring of wind turbines , 2013 .

[58]  Joanna Aizenberg,et al.  Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. , 2012, ACS nano.

[59]  Homayoun Hadavinia,et al.  Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance , 2017, Materials.

[60]  Mike Clifford,et al.  Can flax replace E-glass in structural composites? A small wind turbine blade case study , 2013 .

[61]  G.J.W. Van Bussel,et al.  Influence of atmospheric stability on wind turbine loads , 2013 .

[62]  W. Young,et al.  Structural Analysis and Design of the Composite Wind Turbine Blade , 2012, Applied Composite Materials.