Classification of concepts in thermodynamically consistent generalized plasticity

A classification of various formulations coined as generalized plasticity is introduced. Thereby the authors present variants of both gradient and micromorphic plasticity, which prove thermodynamically consistent by fulfilling the second law of thermodynamics. In a structured manner, they vary key characteristic features of the formulation and compare their influence on the complexity and, in particular, on the benefit of the individual formulations.

[1]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[2]  George Z. Voyiadjis,et al.  A physically based gradient plasticity theory , 2006 .

[3]  E. B. Marin,et al.  A Nonlocal Phenomenological Anisotropic Finite Deformation Plasticity Model Accounting for Dislocation Defects , 2002 .

[4]  C. Tsakmakis,et al.  Finite element implementation of large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects , 2005 .

[5]  Paul Steinmann,et al.  On the continuum formulation of higher gradient plasticity for single and polycrystals , 2000 .

[6]  M. Gurtin On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients , 2003 .

[7]  Norman A. Fleck,et al.  A reformulation of strain gradient plasticity , 2001 .

[8]  Paul Steinmann,et al.  Micropolar elastoplasticity and its role in localization , 1993 .

[9]  Jacob Lubliner,et al.  On the structure of the rate equations of materials with internal variables , 1973 .

[10]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[11]  Guy T. Houlsby,et al.  Application of thermomechanical principles to the modelling of geotechnical materials , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[13]  R. Peerlings On the role of moving elastic–plastic boundaries in strain gradient plasticity , 2006 .

[14]  C. Polizzotto Strain-gradient elastic-plastic material models and assessment of the higher order boundary conditions , 2007 .

[15]  Paul Steinmann,et al.  A unifying treatise on variational principles for gradient and micromorphic continua , 2005 .

[16]  D. Bammann,et al.  A variational multiscale method to incorporate strain gradients in a phenomenological plasticity model , 2004 .

[17]  Peter Gudmundson,et al.  A unified treatment of strain gradient plasticity , 2004 .

[18]  Morton E. Gurtin,et al.  On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .

[19]  D. Besdo Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums , 1974 .

[20]  Ioannis Vardoulakis,et al.  A gradient flow theory of plasticity for granular materials , 1991 .

[21]  George Z. Voyiadjis,et al.  Gradient plasticity theory with a variable length scale parameter , 2005 .

[22]  Wolfgang Ehlers,et al.  On shear band localization phenomena of liquid‐saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations , 1997 .

[23]  Norman A. Fleck,et al.  A phenomenological theory for strain gradient effects in plasticity , 1993 .

[24]  A. Eringen Mechanics of micromorphic materials , 1966 .

[25]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[26]  Castrenze Polizzotto,et al.  A thermodynamics-based formulation of gradient-dependent plasticity , 1998 .

[27]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[28]  K. C. Valanis,et al.  A gradient theory of internal variables , 1996 .

[29]  Paul Steinmann,et al.  On deformational and configurational mechanics of micromorphic hyperelasticity – Theory and computation , 2007 .

[30]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[31]  Paul Steinmann,et al.  Theory and numerics of geometrically non-linear gradient plasticity , 2003 .

[32]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[33]  Gianfranco Capriz,et al.  Continua with Microstructure , 1989 .

[34]  Samuel Forest,et al.  Elastoviscoplastic constitutive frameworks for generalized continua , 2003 .

[35]  Mgd Marc Geers,et al.  Strongly non‐local gradient‐enhanced finite strain elastoplasticity , 2003 .

[36]  G. Maugin Nonlocal theories or gradient-type theories - A matter of convenience , 1979 .

[37]  P. Grammenoudis,et al.  Hardening rules for finite deformation micropolar plasticity: Restrictions imposed by the second law of thermodynamics and the postulate of Il'iushin , 2001 .

[38]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[39]  H. Askes,et al.  A classification of higher-order strain-gradient models in damage mechanics , 2003 .

[40]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[41]  Bernard D. Coleman,et al.  Thermodynamics of materials with memory , 1964 .

[42]  Interactions in general continua with microstructure , 1990 .

[43]  K. Willam,et al.  Localization within the Framework of Micropolar Elasto-Plasticity , 1991 .

[44]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[45]  Dominic G.B. Edelen,et al.  On the thermodynamics of systems with nonlocality , 1971 .

[46]  R. Borst SIMULATION OF STRAIN LOCALIZATION: A REAPPRAISAL OF THE COSSERAT CONTINUUM , 1991 .

[47]  S. Forest,et al.  Thermodynamical Frameworks for Higher Grade Material Theories with Internal Variables or Additional Degrees of Freedom , 2006 .

[48]  D. Sheng,et al.  Journal of Mechanics of Materials and Structures THERMOMECHANICAL FORMULATION OF STRAIN GRADIENT PLASTICITY FOR GEOMATERIALS , 2006 .

[49]  C. Tsakmakis,et al.  Predictions of microtorsional experiments by micropolar plasticity , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  E. Aifantis On the role of gradients in the localization of deformation and fracture , 1992 .

[51]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[52]  Samuel Forest,et al.  Modeling slip, kink and shear banding in classical and generalized single crystal plasticity , 1998 .

[53]  Jerzy Pamin,et al.  Some novel developments in finite element procedures for gradient-dependent plasticity , 1996 .

[54]  Wolfgang Ehlers,et al.  On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials , 1998 .

[55]  Peter Haupt,et al.  Continuum Mechanics and Theory of Materials , 1999 .

[56]  Mgd Marc Geers,et al.  A critical comparison of nonlocal and gradient-enhanced softening continua , 2001 .

[57]  R. Toupin Elastic materials with couple-stresses , 1962 .

[58]  G. Capriz Continua with latent microstructure , 1985 .

[59]  The cosserat continuum, a model for grain rotations in metals? , 1991 .

[60]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[61]  M. Gurtin,et al.  On the formulation of mechanical balance laws for structured continua , 1992 .

[62]  A. Menzel,et al.  Erratum to “On the continuum formulation of higher gradient plasticity for single and polycrystals”: [Journal of the Mechanics and Physics of Solids 48 (2000) 1777–1796] , 2001 .

[63]  P. M. Naghdi,et al.  A general theory of an elastic-plastic continuum , 1965 .

[64]  P. Steinmann,et al.  Theory and numerics of a thermodynamically consistent framework for geometrically linear gradient plasticity , 2001 .

[65]  E. Kröner,et al.  Elasticity theory of materials with long range cohesive forces , 1967 .

[66]  Krishna Garikipati,et al.  Variational multiscale methods to embed the macromechanical continuum formulation with fine‐scale strain gradient theories , 2003 .

[67]  Samuel Forest,et al.  Nonlinear microstrain theories , 2006 .

[68]  E. Fried Continua described by a microstructural field , 1996 .

[69]  W. T. Koiter Couple-stresses in the theory of elasticity , 1963 .

[70]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[71]  P. Steinmann A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity , 1994 .