Ge1-Sn /Si1-Sn SLs lattice-matched to Ge for 1.55 μm lasers

[1]  R. Soref,et al.  Electrically injected GeSn lasers on Si operating up to 100  K , 2020, 2004.09402.

[2]  J. Margetis,et al.  Study of Si-Based GeSn Optically Pumped Lasers With Micro-Disk and Ridge Waveguide Structures , 2019, Front. Phys..

[3]  A. Nikiforov,et al.  Elastically stressed pseudomorphic SiSn island array formation with a pedestal on the Si(1 0 0) substrate using Sn as a growth catalyst , 2019, Journal of Crystal Growth.

[4]  G. Capellini,et al.  (Invited) Epitaxy of Direct Bandgap Group IV Si-Ge-Sn Alloys towards Heterostructure Light Emitters , 2018, ECS Transactions.

[5]  B. Cheng,et al.  Growth of high-Sn content (28%) GeSn alloy films by sputtering epitaxy , 2018, Journal of Crystal Growth.

[6]  R. Soref,et al.  Direct bandgap type-I GeSn/GeSn quantum well on a GeSn- and Ge- buffered Si substrate , 2018 .

[7]  A. Nikiforov,et al.  Growth of Epitaxial SiSn Films with High Sn Content for IR Converters , 2017 .

[8]  Yintang Yang,et al.  The Optical Gain of a Si-Based Lattice-Matched Si0.15Ge0.621Sn0.229/Si0.637Ge0.018Sn0.345 MQW Laser , 2017 .

[9]  Wei Du,et al.  Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics , 2016 .

[10]  Frederic Boeuf,et al.  Tensile-strained germanium microdisks with circular Bragg reflectors , 2016 .

[11]  K. Saitoh,et al.  Material Gain Analysis of GeSn/SiGeSn Quantum Wells for Mid-Infrared Si-Based Light Sources Based on Many-Body Theory , 2015, IEEE Journal of Quantum Electronics.

[12]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[13]  G. Chang,et al.  Quantum-confined photoluminescence from Ge(1-x)Sn(x)/Ge superlattices on Ge-buffered Si(001) substrates. , 2013, Optics letters.

[14]  Jérôme Faist,et al.  Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.

[15]  Krishna C. Saraswat,et al.  Achieving direct band gap in germanium through integration of Sn alloying and external strain , 2013 .

[16]  Weijun Fan,et al.  Electronic band structure and effective mass parameters of Ge1-xSnx alloys , 2012 .

[17]  A. Dimoulas,et al.  Strain-induced changes to the electronic structure of germanium , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Liying Jiang,et al.  Direct versus indirect optical recombination in Ge films grown on Si substrates , 2011, 1106.3300.

[19]  V. D'costa,et al.  Direct integration of active Ge1−x(Si4Sn)x semiconductors on Si(100) , 2009 .

[20]  S. Chuang,et al.  Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength. , 2009, Optics express.

[21]  Marvin L. Cohen,et al.  Possibility of increased mobility in Ge-Sn alloy system , 2007 .

[22]  X. Gong,et al.  Ab Initio All-Electron Calculation of Absolute Volume Deformation Potentials of IV-IV, III-V, and II-VI Semiconductors: The Chemical Trends , 2006 .

[23]  Stefan Zollner,et al.  Optical critical points of thin-film Ge 1-y Sn y alloys: A comparative Ge 1-y Sn y /Ge 1-x Si x study , 2006 .

[24]  Steven M. Beard,et al.  Model for the development of instrument control software using EPICS , 2000, Astronomical Telescopes and Instrumentation.

[25]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[26]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[27]  Vogl,et al.  Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. , 1993, Physical review. B, Condensed matter.

[28]  S. Lewis,et al.  EPICS: A control system software co-development success story , 1993 .

[29]  Niels Egede Christensen,et al.  Electronic structure of α-Sn and its dependence on hydrostatic strain , 1993 .

[30]  Polatoglou,et al.  Unified approach to the electronic structure of strained Si/Ge superlattices. , 1993, Physical review. B, Condensed matter.

[31]  Richard A. Soref,et al.  Electro‐optical and nonlinear optical coefficients of ordered group IV semiconductor alloys , 1992 .

[32]  S. P. McAlister,et al.  A self-consistent two-dimensional model of quantum-well semiconductor lasers: optimization of a GRIN-SCH SQW laser structure , 1992 .

[33]  Richard A. Soref,et al.  Optical band gap of the ternary semiconductor Si1−x−yGexCy , 1991 .

[34]  H. John Caulfield,et al.  Optical interconnection of optical modules , 1990, Optics & Photonics.

[35]  L. Coldren,et al.  Corrections to the expression for gain in GaAs , 1990 .

[36]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[37]  M. Yamada,et al.  Anistropy and broadening of optical gain in a GaAs/AlGaAs multiquantum-well laser , 1985, IEEE Journal of Quantum Electronics.

[38]  Niloy K. Dutta,et al.  Calculated threshold current of GaAs quantum well lasers , 1982 .

[39]  U. Rößler,et al.  Group IV Elements, IV-IV and III-V Compounds. Part a - Lattice Properties , 2001 .

[40]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[41]  O. Madelung Semiconductors : group IV elements and III-V compounds , 1991 .

[42]  R. Soref,et al.  PREDICTED BAND GAP OF THE NEW SEMICONDUCTOR SIGESN , 1991 .