A parametrized sum of fuzzy numbers with applications to fuzzy initial value problems

Abstract This paper presents a new parametrized family of joint possibility distributions that can be used to control the Pompeiu–Hausdorff norm of the sum resulting from the extension principle. We are able to generate sums with norms covering the entire interval ranging from the smallest possible value to the largest one. Finally, we apply our approach to numerical methods for solving first-order fuzzy initial value problems.

[1]  Christer Carlsson,et al.  Additions of completely correlated fuzzy numbers , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[2]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[3]  Weldon A. Lodwick,et al.  Interval and Fuzzy Analysis: A Unified Approach , 2007 .

[4]  P. Kloeden,et al.  Metric Topology of Fuzzy Numbers and Fuzzy Analysis , 2000 .

[5]  Barnabás Bede,et al.  Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations , 2005, Fuzzy Sets Syst..

[6]  Hung T. Nguyen,et al.  A note on the extension principle for fuzzy sets , 1978 .

[7]  Etienne E. Kerre,et al.  Interval-Valued and Intuitionistic Fuzzy Mathematical Morphologies as Special Cases of $\mathbb{L}$-Fuzzy Mathematical Morphology , 2012, Journal of Mathematical Imaging and Vision.

[8]  Bernard De Baets,et al.  Analytical expressions for the addition of fuzzy intervals , 1997, Fuzzy Sets Syst..

[9]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[10]  Robert Fullér,et al.  On Interactive Fuzzy Numbers , 2003, Fuzzy Sets Syst..

[11]  Laécio C. Barros,et al.  A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics - Theory and Applications , 2016, Studies in Fuzziness and Soft Computing.

[12]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[13]  D. Dubois,et al.  Additions of interactive fuzzy numbers , 1981 .

[14]  Robert Fullér,et al.  On generalization on Nguyen's theorem , 1991 .

[15]  W. Pedrycz,et al.  Fuzzy Relation Equations and Their Applications to Knowledge Engineering , 1989, Theory and Decision Library.

[16]  Barnabás Bede,et al.  Mathematics of Fuzzy Sets and Fuzzy Logic , 2012, Studies in Fuzziness and Soft Computing.

[17]  Robert Fullér,et al.  On Generalization of Nguyen’s Theorem: A Short Survey of Recent Developments , 2014 .

[18]  Barnabás Bede,et al.  Generalized differentiability of fuzzy-valued functions , 2013, Fuzzy Sets Syst..

[19]  Lucian C. Coroianu,et al.  Necessary and sufficient conditions for the equality of the interactive and non-interactive sums of two fuzzy numbers , 2016, Fuzzy Sets Syst..

[20]  Radko Mesiar,et al.  Triangular-norm-based addition of fuzzy intervals , 1997, Fuzzy Sets Syst..

[21]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[22]  D. Pompeiu,et al.  Sur la continuité des fonctions de variables complexes , 1905 .

[23]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[24]  B. Bede,et al.  Fuzzy Differential Equations in Various Approaches , 2015 .

[25]  F. Hausdorff Grundzüge der Mengenlehre , 1914 .

[26]  Peter Sussner,et al.  A Family of Joint Possibility Distributions for Adding Interactive Fuzzy Numbers Inspired by Biomathematical Models , 2015, IFSA-EUSFLAT.

[27]  Tibor Keresztfalvi,et al.  t-Norm-based addition of fuzzy intervals , 1992 .

[28]  Laécio C. Barros,et al.  Fuzzy differential equations with interactive derivative , 2017, Fuzzy Sets Syst..