Effective Łojasiewicz inequalities in semialgebraic geometry
暂无分享,去创建一个
[1] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[2] H. R. Wüthrich,et al. Ein Entscheidungsverfahren für die Theorie der reell- abgeschlossenen Körper , 1976, Komplexität von Entscheidungsproblemen 1976.
[3] H. Michael Möller,et al. Upper and Lower Bounds for the Degree of Groebner Bases , 1984, EUROSAM.
[4] W. Böge,et al. Quantifier Elimination for Real Closed Fields , 1985, AAECC.
[5] Joachim von zur Gathen,et al. Parallel Arithmetic Computations: A Survey , 1986, MFCS.
[6] Dima Grigoriev,et al. Complexity of Deciding Tarski Algebra , 1988, J. Symb. Comput..
[7] J. Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .
[8] Joos Heintz,et al. Sur la complexité du principe de Tarski-Seidenberg , 1989 .
[9] Noaï Fitchas,et al. Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen‐Suslin) pour le Calcul Formel , 1990 .
[10] János Kollár,et al. A global lojasiewicz inequality for algebraic varieties , 1992 .