Rare earth (Sm/Eu/Tm) doped ZrO2 driven electro-catalysis, energy storage, and scaffolding in high-performance perovskite solar cells

[1]  Iftikhar Hussain,et al.  Electrophoretic deposition of ZnO/CuO and ZnO/CuO/rGO heterostructure based film as environmental Benign flexible electrode for supercapacitor. , 2023, Chemosphere.

[2]  M. Ijaz Plasmonic hot electrons: Potential candidates for improved photocatalytic hydrogen production , 2022, International Journal of Hydrogen Energy.

[3]  Iftikhar Hussain,et al.  Binder-free cupric-ion containing zinc sulfide nanoplates-like structure for flexible energy storage devices. , 2022, Chemosphere.

[4]  M. A. Malik,et al.  Bio‐inspired NiO / ZrO 2 mixed oxides ( NZMO ) for oxygen evolution reaction: from facile synthesis to electrochemical analysis , 2022, Journal of Chemical Technology & Biotechnology.

[5]  S. Kalaiarasi,et al.  Electrochemical studies and electrocatalytic applications of Zirconia-Polyaniline nanocomposite , 2022, Journal of Electroanalytical Chemistry.

[6]  Q. Mohsen Effect of pH on Hydrothermal Synthesis of ZrO2 Nanoparticles and their Electrocatalytic Activity for Hydrogen Production , 2022, International Journal of Electrochemical Science.

[7]  Muhammad Imran,et al.  Effect of growth duration of Zn0.76Co0.24S interconnected nanosheets for high-performance flexible energy storage electrode materials , 2022, Ceramics International.

[8]  S. Manzoor,et al.  Superior electrochemical performance of neodymium oxide-based Nd2CeMO3 (M = Er, Sm, V) nanostructures for supercapacitor application , 2022, Journal of Electroanalytical Chemistry.

[9]  H. Hassan,et al.  Novel lanthanum sulfide–decorated zirconia nanohybrid for enhanced electrochemical oxygen evolution reaction , 2022, Journal of Solid State Electrochemistry.

[10]  F. Frusteri,et al.  Promotional effect of addition of ceria over yttria-zirconia supported Ni based catalyst system for hydrogen production through dry reforming of methane , 2022, International Journal of Hydrogen Energy.

[11]  M. A. Malik,et al.  Biomimmetic ZrO2@PdO nanocomposites: fabrication, characterization, and water splitting potential exploration , 2022, International Journal of Energy Research.

[12]  D. Iannazzo,et al.  A novel yttria-doped ZrO2 based conductometric sensor for hydrogen leak monitoring , 2022, International Journal of Hydrogen Energy.

[13]  D. Gao,et al.  High-valent Zirconium-doping modified Co3O4 weave-like nanoarray boosts oxygen evolution reaction , 2021 .

[14]  Ki‐Hyun Kim,et al.  Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode , 2021 .

[15]  R. Ullah,et al.  Synthesis, Characterization and Evaluation of Supercapacitive Response of Dodecylbenzenesulphonic Acid (DBSA) Doped Polypyrrole/Zirconium Dioxide Composites , 2021, Polymers.

[16]  V. Safarifard,et al.  Tuning the crystallinity of ZrO2 nanostructures derived from thermolysis of Zr-based aspartic acid/succinic acid MOFs for energy storage application , 2021 .

[17]  E. Sadeghi,et al.  Metal-substituted zirconium diboride (Zr1-xTMxB2; TM = Ni, Co, and Fe) as low-cost and high-performance bifunctional electrocatalyst for water splitting , 2021 .

[18]  K. Ahmad,et al.  Newfangled progressions in the charge transport layers impacting the stability and efficiency of perovskite solar cells , 2021, Reviews in Inorganic Chemistry.

[19]  Liyuan Gong,et al.  Photoluminescence properties of Eu3+ doped ZrO2 with different morphologies and crystal structures , 2021 .

[20]  M. A. Malik,et al.  Electro-catalyst [ZrO2/ZnO/PdO]-NPs green functionalization: Fabrication, characterization and water splitting potential assessment , 2021 .

[21]  Yinling Wang,et al.  Improving the electrocatalytic activity of NiFe bimetal-organic framework toward oxygen evolution reaction by Zr doping , 2021, Electrochimica Acta.

[22]  K. Ahmad,et al.  Functionalization of Mn2O3/PdO/ZnO electrocatalyst using organic template with accentuated electrochemical potential toward water splitting , 2021, International Journal of Energy Research.

[23]  K. Ahmad,et al.  Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability , 2021, Zeitschrift für Physikalische Chemie.

[24]  M. Tahir,et al.  Chromium incorporated copper vanadate nano-materials for hydrogen evolution by water splitting , 2021, Applied Nanoscience.

[25]  Ashish Kumar Singh,et al.  Lanthanide based double perovskites: Bifunctional catalysts for oxygen evolution/reduction reactions , 2021 .

[26]  F. Hussain,et al.  Thin-film iron-oxide nanobeads as bifunctional electrocatalyst for high activity overall water splitting , 2021 .

[27]  K. Ahmad,et al.  Biomimetic [MoO3@ZnO] semiconducting nanocomposites: Chemo-proportional fabrication, characterization and energy storage potential exploration , 2020 .

[28]  K. Ahmad,et al.  Systematic review elucidating the generations and classifications of solar cells contributing towards environmental sustainability integration , 2020 .

[29]  K. Ahmad,et al.  Synthesis, characterization and electrochemical investigation of physical vapor deposited barium sulphide doped iron sulphide dithiocarbamate thin films , 2020 .

[30]  Merve Akbayrak,et al.  Binder- free iridium based electrocatalysts: Facile preparation, high activity and outstanding stability for hydrogen evolution reaction in acidic medium. , 2020, Journal of colloid and interface science.

[31]  K. Ahmad,et al.  Interfacial engineering revolutionizers: perovskite nanocrystals and quantum dots accentuated performance enhancement in perovskite solar cells , 2020 .

[32]  Joonhee Kang,et al.  TiO2/ZrO2 Nanoparticle Composites for Electrochemical Hydrogen Evolution , 2020 .

[33]  Qinghua Zhang,et al.  Intermetallic Cu5Zr Clusters Anchored on Hierarchical Nanoporous Copper as Efficient Catalysts for Hydrogen Evolution Reaction , 2020, Research.

[34]  Jun Chen,et al.  Facile synthesis of amorphous MoSx-Fe anchored on Zr-MOFs towards efficient and stable electrocatalytic hydrogen evolution. , 2020, Chemical communications.

[35]  Z. Xia,et al.  Lanthanide doping in metal halide perovskite nanocrystals: spectral shifting, quantum cutting and optoelectronic applications , 2020, NPG Asia Materials.

[36]  M. Sagir,et al.  Hierarchical WO3@ BiVO4 nanostructures for improved green energy production , 2019, Applied Nanoscience.

[37]  Alexis Grimaud,et al.  The hydrogen evolution reaction: from material to interfacial descriptors , 2019, Chemical science.

[38]  A. Iqbal,et al.  Mesoporous Ce 2 Zr 2 O 7 /PbS Nanocomposite with an Excellent Supercapacitor Electrode Performance and Cyclic Stability , 2019, ChemistrySelect.

[39]  Z. Ren,et al.  Water splitting by electrolysis at high current densities under 1.6 volts , 2018 .

[40]  Brij Kishore,et al.  Mesoporous Ta2O5 nanoparticles as an anode material for lithium ion battery and an efficient photocatalyst for hydrogen evolution , 2018, International Journal of Hydrogen Energy.

[41]  J. Nørskov,et al.  Resolving Hysteresis in Perovskite Solar Cells with Rapid Flame‐Processed Cobalt‐Doped TiO2 , 2018, Advanced Energy Materials.

[42]  I. M. Mohamed,et al.  Design of novel electrode for capacitive deionization using electrospun composite titania/zirconia nanofibers doped-activated carbon , 2018 .

[43]  M. Deepa,et al.  Identifying the charge generation dynamics in Cs+-based triple cation mixed perovskite solar cells. , 2017, Physical chemistry chemical physics : PCCP.

[44]  F. Illas,et al.  ZrO2 Nanoparticles: a density functional theory study of structure, properties and reactivity , 2017, Rendiconti Lincei.

[45]  Yang Yang,et al.  The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells. , 2017, Nano letters.

[46]  H. P. Nagaswarupa,et al.  Bio-mediated Sm doped nano cubic zirconia: Photoluminescent, Judd–Ofelt analysis, electrochemical impedance spectroscopy and photocatalytic performance , 2016 .

[47]  Hamouda M. Mousa,et al.  Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode , 2016 .

[48]  Xin Zhang,et al.  Molybdenum Polysulfide Anchored on Porous Zr-Metal Organic Framework To Enhance the Performance of Hydrogen Evolution Reaction , 2016 .

[49]  H. Muralidhara,et al.  Synthesis of polyaniline/ZrO2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance , 2016, Bulletin of Materials Science.

[50]  D. Peeters,et al.  Amorphous Cobalt Boride (Co2B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution , 2016 .

[51]  Harish Mudila,et al.  Electrochemical performance of zirconia/graphene oxide nanocomposites cathode designed for high power density supercapacitor , 2016, Journal of Analytical Science and Technology.

[52]  B. Tang,et al.  Ultrafine nano zirconia as electrochemical pseudocapacitor material , 2015 .

[53]  Yi Xie,et al.  Zirconium trisulfide ultrathin nanosheets as efficient catalysts for water oxidation in both alkaline and neutral solutions , 2014 .

[54]  Hyun-Chel Kim,et al.  Improved supercapacitor potential and antibacterial activity of bimetallic CNFs–Sn–ZrO2 nanofibers: fabrication and characterization , 2014 .

[55]  B. Chen,et al.  Effects of manganese nitrate concentration on the performance of an aluminum substrate β-PbO2–MnO2–WC–ZrO2 composite electrode material , 2014 .

[56]  Xuefeng Qian,et al.  RE/ZrO2 (RE = Sm, Eu) composite oxide nano-materials: Synthesis and applications in photocatalysis , 2013 .

[57]  M. Mokhtar,et al.  Effect of iron oxide loading on the phase transformation and physicochemical properties of nanosized mesoporous ZrO2 , 2012 .

[58]  M. Golozar,et al.  Nano zirconium oxide/carbon black as a new electrode material for electrochemical double layer capacitors , 2012 .

[59]  B. Vertruyen,et al.  Effect of annealing temperatures on properties of sol‐gel grown ZnO‐ZrO2 films , 2010 .

[60]  S. Rowshanzamir,et al.  Synergistically enhanced nitrate removal by capacitive deionization with activated carbon/PVDF/polyaniline/ZrO2 composite electrode , 2021 .

[61]  Darwin Arifin,et al.  Investigation of Zr, Gd/Zr, and Pr/Zr – doped ceria for the redox splitting of water , 2020 .