Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry.

We describe a new technique based on the use of a high-resolution quadri-wave lateral shearing interferometer to perform quantitative linear retardance and birefringence measurements on biological samples. The system combines quantitative phase images with varying polarization excitation to create retardance images. This technique is compatible with living samples and gives information about the local retardance and structure of their anisotropic components. We applied our approach to collagen fibers leading to a birefringence value of (3.4 ± 0.3) · 10(-3) and to living cells, showing that cytoskeleton can be imaged label-free.

[1]  B. Wattellier,et al.  Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination. , 2014, Optics express.

[2]  R. Jones A New Calculus for the Treatment of Optical Systems. IV. , 1942 .

[3]  M. Teitell,et al.  Live-cell mass profiling: an emerging approach in quantitative biophysics , 2014, Nature Methods.

[4]  Pinhas Girshovitz,et al.  Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization , 2012, Biomedical optics express.

[5]  R. Chipman,et al.  Homogeneous and inhomogeneous Jones matrices , 1994 .

[6]  H. Iseki,et al.  Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography , 2008, Journal of Neuroscience Methods.

[7]  F. P. Bolin,et al.  Refractive index of some mammalian tissues using a fiber optic cladding method. , 1989, Applied optics.

[8]  C. Fang-Yen,et al.  Tomographic phase microscopy , 2008, Nature Methods.

[9]  Sandrine Lévêque-Fort,et al.  Fast label-free cytoskeletal network imaging in living mammalian cells. , 2014, Biophysical journal.

[10]  E. Cuche,et al.  Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. , 2005, Optics express.

[11]  T. Wilson,et al.  Quantitative polarized light microscopy , 2003, Journal of microscopy.

[12]  Paolo P. Provenzano,et al.  Aligned Collagen Is a Prognostic Signature for Survival in Human Breast Carcinoma Address Reprint Requests to See Related Commentary on Page 966 , 2022 .

[13]  Arnab Bhattacharjee,et al.  Collagen Structure: The Madras Triple Helix and the Current Scenario , 2005, IUBMB life.

[14]  E D Salmon,et al.  Birefringence of single and bundled microtubules. , 1998, Biophysical journal.

[15]  Zhuo Wang,et al.  Optical measurement of cycle-dependent cell growth , 2011, Proceedings of the National Academy of Sciences.

[16]  B. Wattellier,et al.  Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. , 2009, Optics express.

[17]  Osamu Matoba,et al.  Single-shot polarization-imaging digital holography based on simultaneous phase-shifting interferometry. , 2011, Optics letters.

[18]  L. Delbridge,et al.  Quantitative polarized phase microscopy for birefringence imaging. , 2007, Optics express.

[19]  Chuanmao Fan,et al.  Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography , 2013, Biomedical optics express.

[20]  T. Holak,et al.  Lifeact: a versatile marker to visualize F-actin , 2008, Nature Methods.

[21]  A. Pierangelo,et al.  Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. , 2011, Optics express.

[22]  In Hee Shin,et al.  New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells. , 2010, Journal of biomedical optics.

[23]  N. Dragomir,et al.  Orientation independent retardation imaging using quantitative polarized phase microscopy , 2012, Microscopy research and technique.

[24]  P. Marquet,et al.  Marker-free phase nanoscopy , 2013, Nature Photonics.

[25]  D. Lauffenburger,et al.  Cell Migration: A Physically Integrated Molecular Process , 1996, Cell.

[26]  Jaeduck Jang,et al.  Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix. , 2012, Optics express.

[27]  B. Kemper,et al.  Digital holographic microscopy for live cell applications and technical inspection. , 2008, Applied optics.

[28]  R. Chipman,et al.  Interpretation of Mueller matrices based on polar decomposition , 1996 .

[29]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[30]  E. Cuche,et al.  Digital holography for quantitative phase-contrast imaging. , 1999, Optics letters.

[31]  Serge Monneret,et al.  Noniterative boundary-artifact-free wavefront reconstruction from its derivatives. , 2012, Applied optics.

[32]  Shukei Sugita,et al.  Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues. , 2013, Journal of biomechanics.

[33]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[34]  J Primot,et al.  Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard. , 2000, Applied optics.

[35]  O. Haeberlé,et al.  High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples. , 2009, Optics letters.

[36]  K. Nugent,et al.  Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells , 2004, Clinical and experimental pharmacology & physiology.

[37]  Serge Monneret,et al.  Optical detection and measurement of living cell morphometric features with single-shot quantitative phase microscopy. , 2012, Journal of biomedical optics.

[38]  Zhuo Wang,et al.  Jones phase microscopy of transparent and anisotropic samples. , 2008, Optics letters.

[39]  R. Jones,et al.  A New Calculus for the Treatment of Optical SystemsII. Proof of Three General Equivalence Theorems , 1941 .