Quantum Measurement Theory in Gravitational-Wave Detectors
暂无分享,去创建一个
[1] Yanbei Chen,et al. Practical speed meter designs for quantum nondemolition gravitational-wave interferometers , 2002, gr-qc/0208049.
[2] D. Klyshko,et al. Field Statistics in Parametric Luminescence , 1969 .
[3] M. M. Fejer,et al. Excess Mechanical Loss Associated with Dielectric Mirror Coatings on Test Masses in Interferometric Gravitational Wave Detectors , 2001 .
[4] Collett,et al. Quantum limits in interferometric detection of gravitational radiation. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[5] A. Peres. When is a quantum measurement , 1986 .
[6] U. Keller,et al. Optical phase noise and carrier-envelope offset noise of mode-locked lasers , 2006 .
[7] Hidehiro Yonezawa,et al. Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. , 2007, Optics express.
[8] W. Unruh. QUANTUM NONDEMOLITION AND GRAVITY WAVE DETECTION , 1979 .
[9] L. Landau,et al. statistical-physics-part-1 , 1958 .
[10] W. Unruh. Quantum Noise in the Interferometer Detector , 1983 .
[11] R. Schnabel,et al. Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors , 2003, gr-qc/0303066.
[12] Benno Willke,et al. EXPERIMENTAL DEMONSTRATION OF A SUSPENDED DUAL RECYCLING INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION , 1998 .
[13] V. Braginsky,et al. Gravitational wave antenna with QND speed meter , 1990 .
[14] S. Vyatchanin,et al. The discrete sampling variation measurement , 2000 .
[15] Kirk McKenzie,et al. Squeezing in the audio gravitational-wave detection band. , 2004, Physical review letters.
[16] T. Hayler,et al. Observation of a kilogram-scale oscillator near its quantum ground state , 2009 .
[17] N. Mavalvala,et al. Creation of a quantum oscillator by classical control , 2008, 0809.2024.
[18] H. Callen,et al. Irreversibility and Generalized Noise , 1951 .
[19] Peter Fritschel,et al. Second generation instruments for the Laser Interferometer Gravitational Wave Observatory (LIGO) , 2003, SPIE Astronomical Telescopes + Instrumentation.
[20] R. Kubo. a General Expression for the Conductivity Tensor , 1956 .
[21] David Blair,et al. A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.
[22] F. Khalili,et al. Optimal configurations of filter cavity in future gravitational-wave detectors , 2010, 1003.2859.
[23] Yuri Levin. Internal thermal noise in the LIGO test masses: A direct approach , 1998 .
[24] V. Shapiro. ON PONDEROMOTIVE EFFECTS OF ELECTROMAGNETIC RADIATION. , 1968 .
[25] M. Fejer,et al. Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2 , 2009 .
[26] R. Schnabel,et al. Quantum noise of a Michelson-Sagnac interferometer with a translucent mechanical oscillator , 2009, 0912.2603.
[27] R. DeSalvo,et al. A xylophone configuration for a third-generation gravitational wave detector , 2009, 0906.2655.
[28] Schumaker,et al. New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. , 1985, Physical review. A, General physics.
[29] Meers,et al. Modulation, signal, and quantum noise in interferometers. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[30] V. Braginsky,et al. Optimal quantum measurements in gravitational-wave detectors , 1978 .
[31] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .
[32] Alban Remillieux,et al. Titania-doped tantala/silica coatings for gravitational-wave detection , 2006 .
[33] S. L. Danilishin. Sensitivity limitations in optical speed meter topology of gravitational-wave antennas , 2004 .
[34] Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy. , 2001, Physical review letters.
[35] S. Kawamura,et al. Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes , 2006 .
[36] Matthew Pitkin,et al. Gravitational Wave Detection by Interferometry (Ground and Space) , 2000, Living reviews in relativity.
[37] dc readout experiment at the Caltech 40m prototype interferometer , 2008 .
[38] Karsten Danzmann,et al. Observation of squeezed light with 10-dB quantum-noise reduction. , 2007, Physical review letters.
[39] Karsten Danzmann,et al. Coherent control of vacuum squeezing in the gravitational-wave detection band. , 2006, Physical review letters.
[40] E. Phinney,et al. The Scientific Case for Advanced LIGO Interferometers , 2022 .
[41] Bernard F Schutz. Gravitational Radiation , 2000 .
[42] V. Braginsky,et al. Low noise rigidity in quantum measurements , 1999 .
[43] S. Bose,et al. Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.
[44] Von der Fakultat. On quantum effects in the dynamics of macroscopic test masses , 2009 .
[45] N. Mavalvala,et al. Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors , 2011 .
[46] S. Vyatchanin,et al. On the quantum limit for resolution in force measurement in interferometric optical transducers of displacement , 1994 .
[47] Yanbei Chen,et al. Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme , 2003 .
[48] Joseph H. Eberly,et al. Quantum Optics in Phase Space , 2002 .
[49] V. Sandberg,et al. Quantum nondemolition measurements of harmonic oscillators , 1978 .
[50] S. Hild. Beyond the First Generation: Extending the Science Range of the Gravitational Wave Detector GEO600 , 2007 .
[51] C. Caves,et al. A New Formalism for Two-Photon Quantum Optics , 1984 .
[52] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[53] Winkler,et al. Nonstationary shot noise and its effect on the sensitivity of interferometers. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[54] Gustafson,et al. Sagnac interferometer for gravitational-wave detection. , 1996, Physical review letters.
[55] N. Mavalvala,et al. Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.
[56] J. Alberto Lobo,et al. The Detection of Gravitational Waves , 2002, gr-qc/0202063.
[57] G. Prodi,et al. Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature. , 2008, Physical review letters.
[58] Karsten Danzmann,et al. Double optical spring enhancement for gravitational wave detectors , 2008, 0805.3096.
[59] Bernard F. Schutz,et al. The GEO 600 gravitational wave detector , 2002 .
[60] Kip S. Thorne,et al. APPLICATIONS OF CLASSICAL PHYSICS , 2013 .
[61] H. Miao,et al. Probing macroscopic quantum states with a sub-Heisenberg accuracy , 2009, 0905.3729.
[62] Topics of LIGO physics: quantum noise in advanced interferometers and template banks for compact-binary inspirals , 2003 .
[63] Martin M. Fejer,et al. Mechanical loss in tantala/silica dielectric mirror coatings , 2003 .
[64] A. Buonanno,et al. Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers , 2003, gr-qc/0310026.
[65] S. Danilishin,et al. Stroboscopic variation measurement , 2002 .
[66] P. Wessels,et al. Stabilized lasers for advanced gravitational wave detectors , 2008 .
[67] Bernard F. Schutz,et al. Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.
[68] Rüdiger Paschotta,et al. Noise of mode-locked lasers (Part II): timing jitter and other fluctuations , 2004 .
[69] Karsten Danzmann,et al. Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer. , 2005, Physical review letters.
[70] D. A. Edwards. The mathematical foundations of quantum mechanics , 1979, Synthese.
[71] Edith Innerhofer,et al. An all-optical trap for a gram-scale mirror. , 2006, Physical review letters.
[72] Kenji Numata,et al. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.
[73] Yanbei Chen,et al. Preparing a mechanical oscillator in non-gaussian quantum states. , 2010, Physical review letters.
[74] Timothy C. Ralph,et al. Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).
[75] F. Khalili,et al. Squeezed-state source using radiation-pressure-induced rigidity (14 pages) , 2005, gr-qc/0511001.
[76] F. Khalili,et al. Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors , 2010, 1010.1124.
[77] On the quantum limit for resolution in force measurement using an optical displacement transducer , 1994 .
[78] B. J. Meers,et al. Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.
[79] S. Girvin,et al. Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.
[80] J. Cleymans,et al. Transition from baryon-to meson-dominated freeze-out—early decoupling around 30 A GeV? , 2006, nucl-th/0701080.
[81] H. Miao,et al. Universal quantum entanglement between an oscillator and continuous fields , 2009, 0908.1053.
[82] M. Fejer,et al. Thermo-optic noise in coated mirrors for high-precision optical measurements , 2008, 0807.4774.
[83] Jerome Degallaix,et al. Commissioning of the tuned DC readout at GEO 600 , 2010 .
[84] V. Braginsky,et al. The analysis of table-top quantum measurement with macroscopic masses , 2001 .
[85] T. Kippenberg,et al. Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.
[86] H. Miao,et al. Standard quantum limit for probing mechanical energy quantization. , 2009, Physical review letters.
[87] H. Miao,et al. Achieving ground state and enhancing optomechanical entanglement by recovering information , 2010, 1003.4048.
[88] F. Khalili. The “optical lever” intracavity readout scheme for gravitational-wave antennae , 2002 .
[89] Yanbei Chen,et al. Scaling law in signal recycled laser-interferometer gravitational-wave detectors , 2003 .
[90] M. Gorodetsky,et al. Optical bars in gravitational wave antennas , 1997 .
[91] A. Freise,et al. DC-readout of a signal-recycled gravitational wave detector , 2008, 0811.3242.
[92] Blow,et al. Continuum fields in quantum optics. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.
[93] F. Khalili,et al. Optimizing the regimes of the Advanced LIGO gravitational wave detector for multiple source types , 2008, 0806.1505.
[94] R. Krotkov,et al. Quantum Optics, Experimental Gravitation, and Measurement Theory , 1983 .
[95] Beating quantum limits in optomechanical sensor by cavity detuning , 2006, quant-ph/0602040.
[96] Sergey P. Vyatchanin,et al. Quantum variation measurement of a force , 1995 .
[97] Peter Fritschel,et al. DC readout experiment in Enhanced LIGO , 2011, 1110.2815.
[98] Schumaker,et al. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. , 1985, Physical review. A, General physics.
[99] S. Danilishin,et al. Practical design of the optical lever intracavity topology of gravitational-wave detectors , 2006 .
[100] H. Müller-Ebhardt. On quantum effects in the dynamics of macroscopic test masses , 2009 .
[101] S. Reynaud,et al. Quantum Limits in Interferometric Measurements , 1990, quant-ph/0101104.
[102] J. Smith,et al. The path to the enhanced and advanced LIGO gravitational-wave detectors , 2009, 0902.0381.
[103] V. Braginskii. Classical and Quantum Restrictions on the Detection of Weak Disturbances of a Macroscopic Oscillator , 1968 .
[104] M. Rakhmanov. Dynamics of laser interferometric gravitational wave detectors , 2000 .
[105] Rüdiger Paschotta,et al. Noise of mode-locked lasers (Part I): numerical model , 2004 .
[106] Joshua R. Smith,et al. LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.
[107] A. Clerk,et al. Back-action evasion and squeezing of a mechanical resonator using a cavity detector , 2008, 0802.1842.
[108] Maira Amezcua,et al. Quantum Optics , 2012 .
[109] M. M. Casey,et al. The GEO-HF project , 2006 .
[110] L. Mandel,et al. Optical Coherence and Quantum Optics , 1995 .
[111] Vladimir B. Braginskii,et al. Optimal quantum measurements in detectors of gravitation radiation , 1978 .
[112] G. M. Harry,et al. Optical coatings and thermal noise in precision measurement , 2011 .
[113] O. Okunev,et al. Picosecond superconducting single-photon optical detector , 2001 .
[114] Karsten Danzmann,et al. Local readout enhancement for detuned signal-recycling interferometers , 2007 .
[115] F. Khalili,et al. QND measurements for future gravitational-wave detectors , 2009, 0910.0319.
[116] Jeanette G. Grasselli,et al. “On the Relative Motion of the Earth and the Luminiferous Ether” , 1987 .
[117] K. Postnov,et al. The Evolution of Compact Binary Star Systems , 2006, Living reviews in relativity.
[118] Yanbei Chen,et al. Quantum noise in second generation, signal recycled laser interferometric gravitational wave detectors , 2001 .
[119] Charles C. Harb,et al. Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source , 1997 .
[120] Gerd Leuchs,et al. Squeezed States for Interferometric Gravitational-wave Detectors , 1987 .
[121] V. Braginskii,et al. Quantum-mechanical limitations in macroscopic experiments and modern experimental technique , 1975 .
[122] R. Lindsay,et al. General relativity and gravitational waves , 1962 .
[123] Karsten Danzmann,et al. The GEO 600 squeezed light source , 2010, 1004.4975.
[124] P. Purdue. Analysis of a quantum nondemolition speed-meter interferometer , 2002 .
[125] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.
[126] C. Caves,et al. Coherent quantum-noise cancellation for optomechanical sensors. , 2010, Physical review letters.
[127] W. Schleich. Quantum Optics in Phase Space: SCHLEICH:QUANTUM OPTICS O-BK , 2005 .
[128] A. Sawadsky,et al. Laser interferometry with translucent and absorbing mechanical oscillators , 2011, 1104.3251.
[129] R L Byer,et al. Polarization Sagnac interferometer with postmodulation for gravitational-wave detection. , 1999, Optics letters.
[130] A. Matsko,et al. Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization , 2001, gr-qc/0109003.
[131] Yanbei Chen,et al. Signal recycled laser-interferometer gravitational-wave detectors as optical springs , 2002 .
[132] V. Quetschke,et al. Intensity and frequency noise reduction of a Nd:YAG NPRO via pump light stabilisation , 2006 .
[133] Markus Aspelmeyer,et al. Quantum optomechanics—throwing a glance [Invited] , 2010, 1005.5518.
[134] J. Vinet. On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors , 2009, Living reviews in relativity.
[135] G. Heinzel. Advanced optical techniques for laser-interferometric gravitational-wave detectors , 1999 .
[136] R. Schnabel,et al. Quantum state preparation and macroscopic entanglement in gravitational-wave detectors , 2009, 0903.0079.
[137] G. Russo,et al. Virgo upgrade investigations , 2006 .
[138] V. Sandberg,et al. ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .
[139] S. Rowan,et al. THE DETECTION OF GRAVITATIONAL WAVES , 1999 .
[140] Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.
[141] Yanbei Chen. Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector , 2003 .
[142] W. Bonnor,et al. Gravitational Radiation , 1958, Nature.
[143] F. Khalili. Quantum speedmeter and laser interferometric gravitational-wave antennae , 2002 .
[144] M. Fejer,et al. Polarization Sagnac interferometer with a reflective grating beam splitter. , 2000, Optics letters.
[145] Andrey B. Matsko,et al. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2001 .
[146] M. S. Zubairy,et al. Quantum optics: Frontmatter , 1997 .
[147] S. Kawamura,et al. Erratum: Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes [Phys. Rev. D 73, 122005 (2006)] , 2007 .
[148] Demonstration of detuned dual recycling at the Garching 30 m laser interferometer , 2000, gr-qc/0006026.
[149] Benno Willke,et al. The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .
[150] K. Thorne,et al. Quantum Nondemolition Measurements , 1980, Science.
[151] R. Morrow,et al. Foundations of Quantum Mechanics , 1968 .
[152] Martin M. Fejer,et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.
[153] Karsten Danzmann,et al. Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. , 2007, Physical review letters.
[154] Vinet,et al. Optimization of long-baseline optical interferometers for gravitational-wave detection. , 1988, Physical review. D, Particles and fields.