Quantum Measurement Theory in Gravitational-Wave Detectors

The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

[1]  Yanbei Chen,et al.  Practical speed meter designs for quantum nondemolition gravitational-wave interferometers , 2002, gr-qc/0208049.

[2]  D. Klyshko,et al.  Field Statistics in Parametric Luminescence , 1969 .

[3]  M. M. Fejer,et al.  Excess Mechanical Loss Associated with Dielectric Mirror Coatings on Test Masses in Interferometric Gravitational Wave Detectors , 2001 .

[4]  Collett,et al.  Quantum limits in interferometric detection of gravitational radiation. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[5]  A. Peres When is a quantum measurement , 1986 .

[6]  U. Keller,et al.  Optical phase noise and carrier-envelope offset noise of mode-locked lasers , 2006 .

[7]  Hidehiro Yonezawa,et al.  Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. , 2007, Optics express.

[8]  W. Unruh QUANTUM NONDEMOLITION AND GRAVITY WAVE DETECTION , 1979 .

[9]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[10]  W. Unruh Quantum Noise in the Interferometer Detector , 1983 .

[11]  R. Schnabel,et al.  Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors , 2003, gr-qc/0303066.

[12]  Benno Willke,et al.  EXPERIMENTAL DEMONSTRATION OF A SUSPENDED DUAL RECYCLING INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION , 1998 .

[13]  V. Braginsky,et al.  Gravitational wave antenna with QND speed meter , 1990 .

[14]  S. Vyatchanin,et al.  The discrete sampling variation measurement , 2000 .

[15]  Kirk McKenzie,et al.  Squeezing in the audio gravitational-wave detection band. , 2004, Physical review letters.

[16]  T. Hayler,et al.  Observation of a kilogram-scale oscillator near its quantum ground state , 2009 .

[17]  N. Mavalvala,et al.  Creation of a quantum oscillator by classical control , 2008, 0809.2024.

[18]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[19]  Peter Fritschel,et al.  Second generation instruments for the Laser Interferometer Gravitational Wave Observatory (LIGO) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[20]  R. Kubo a General Expression for the Conductivity Tensor , 1956 .

[21]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[22]  F. Khalili,et al.  Optimal configurations of filter cavity in future gravitational-wave detectors , 2010, 1003.2859.

[23]  Yuri Levin Internal thermal noise in the LIGO test masses: A direct approach , 1998 .

[24]  V. Shapiro ON PONDEROMOTIVE EFFECTS OF ELECTROMAGNETIC RADIATION. , 1968 .

[25]  M. Fejer,et al.  Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2 , 2009 .

[26]  R. Schnabel,et al.  Quantum noise of a Michelson-Sagnac interferometer with a translucent mechanical oscillator , 2009, 0912.2603.

[27]  R. DeSalvo,et al.  A xylophone configuration for a third-generation gravitational wave detector , 2009, 0906.2655.

[28]  Schumaker,et al.  New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. , 1985, Physical review. A, General physics.

[29]  Meers,et al.  Modulation, signal, and quantum noise in interferometers. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[30]  V. Braginsky,et al.  Optimal quantum measurements in gravitational-wave detectors , 1978 .

[31]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[32]  Alban Remillieux,et al.  Titania-doped tantala/silica coatings for gravitational-wave detection , 2006 .

[33]  S. L. Danilishin Sensitivity limitations in optical speed meter topology of gravitational-wave antennas , 2004 .

[34]  Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy. , 2001, Physical review letters.

[35]  S. Kawamura,et al.  Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes , 2006 .

[36]  Matthew Pitkin,et al.  Gravitational Wave Detection by Interferometry (Ground and Space) , 2000, Living reviews in relativity.

[37]  dc readout experiment at the Caltech 40m prototype interferometer , 2008 .

[38]  Karsten Danzmann,et al.  Observation of squeezed light with 10-dB quantum-noise reduction. , 2007, Physical review letters.

[39]  Karsten Danzmann,et al.  Coherent control of vacuum squeezing in the gravitational-wave detection band. , 2006, Physical review letters.

[40]  E. Phinney,et al.  The Scientific Case for Advanced LIGO Interferometers , 2022 .

[41]  Bernard F Schutz Gravitational Radiation , 2000 .

[42]  V. Braginsky,et al.  Low noise rigidity in quantum measurements , 1999 .

[43]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[44]  Von der Fakultat On quantum effects in the dynamics of macroscopic test masses , 2009 .

[45]  N. Mavalvala,et al.  Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors , 2011 .

[46]  S. Vyatchanin,et al.  On the quantum limit for resolution in force measurement in interferometric optical transducers of displacement , 1994 .

[47]  Yanbei Chen,et al.  Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme , 2003 .

[48]  Joseph H. Eberly,et al.  Quantum Optics in Phase Space , 2002 .

[49]  V. Sandberg,et al.  Quantum nondemolition measurements of harmonic oscillators , 1978 .

[50]  S. Hild Beyond the First Generation: Extending the Science Range of the Gravitational Wave Detector GEO600 , 2007 .

[51]  C. Caves,et al.  A New Formalism for Two-Photon Quantum Optics , 1984 .

[52]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[53]  Winkler,et al.  Nonstationary shot noise and its effect on the sensitivity of interferometers. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[54]  Gustafson,et al.  Sagnac interferometer for gravitational-wave detection. , 1996, Physical review letters.

[55]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[56]  J. Alberto Lobo,et al.  The Detection of Gravitational Waves , 2002, gr-qc/0202063.

[57]  G. Prodi,et al.  Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature. , 2008, Physical review letters.

[58]  Karsten Danzmann,et al.  Double optical spring enhancement for gravitational wave detectors , 2008, 0805.3096.

[59]  Bernard F. Schutz,et al.  The GEO 600 gravitational wave detector , 2002 .

[60]  Kip S. Thorne,et al.  APPLICATIONS OF CLASSICAL PHYSICS , 2013 .

[61]  H. Miao,et al.  Probing macroscopic quantum states with a sub-Heisenberg accuracy , 2009, 0905.3729.

[62]  Topics of LIGO physics: quantum noise in advanced interferometers and template banks for compact-binary inspirals , 2003 .

[63]  Martin M. Fejer,et al.  Mechanical loss in tantala/silica dielectric mirror coatings , 2003 .

[64]  A. Buonanno,et al.  Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers , 2003, gr-qc/0310026.

[65]  S. Danilishin,et al.  Stroboscopic variation measurement , 2002 .

[66]  P. Wessels,et al.  Stabilized lasers for advanced gravitational wave detectors , 2008 .

[67]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[68]  Rüdiger Paschotta,et al.  Noise of mode-locked lasers (Part II): timing jitter and other fluctuations , 2004 .

[69]  Karsten Danzmann,et al.  Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer. , 2005, Physical review letters.

[70]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[71]  Edith Innerhofer,et al.  An all-optical trap for a gram-scale mirror. , 2006, Physical review letters.

[72]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[73]  Yanbei Chen,et al.  Preparing a mechanical oscillator in non-gaussian quantum states. , 2010, Physical review letters.

[74]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[75]  F. Khalili,et al.  Squeezed-state source using radiation-pressure-induced rigidity (14 pages) , 2005, gr-qc/0511001.

[76]  F. Khalili,et al.  Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors , 2010, 1010.1124.

[77]  On the quantum limit for resolution in force measurement using an optical displacement transducer , 1994 .

[78]  B. J. Meers,et al.  Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.

[79]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[80]  J. Cleymans,et al.  Transition from baryon-to meson-dominated freeze-out—early decoupling around 30 A GeV? , 2006, nucl-th/0701080.

[81]  H. Miao,et al.  Universal quantum entanglement between an oscillator and continuous fields , 2009, 0908.1053.

[82]  M. Fejer,et al.  Thermo-optic noise in coated mirrors for high-precision optical measurements , 2008, 0807.4774.

[83]  Jerome Degallaix,et al.  Commissioning of the tuned DC readout at GEO 600 , 2010 .

[84]  V. Braginsky,et al.  The analysis of table-top quantum measurement with macroscopic masses , 2001 .

[85]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[86]  H. Miao,et al.  Standard quantum limit for probing mechanical energy quantization. , 2009, Physical review letters.

[87]  H. Miao,et al.  Achieving ground state and enhancing optomechanical entanglement by recovering information , 2010, 1003.4048.

[88]  F. Khalili The “optical lever” intracavity readout scheme for gravitational-wave antennae , 2002 .

[89]  Yanbei Chen,et al.  Scaling law in signal recycled laser-interferometer gravitational-wave detectors , 2003 .

[90]  M. Gorodetsky,et al.  Optical bars in gravitational wave antennas , 1997 .

[91]  A. Freise,et al.  DC-readout of a signal-recycled gravitational wave detector , 2008, 0811.3242.

[92]  Blow,et al.  Continuum fields in quantum optics. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[93]  F. Khalili,et al.  Optimizing the regimes of the Advanced LIGO gravitational wave detector for multiple source types , 2008, 0806.1505.

[94]  R. Krotkov,et al.  Quantum Optics, Experimental Gravitation, and Measurement Theory , 1983 .

[95]  Beating quantum limits in optomechanical sensor by cavity detuning , 2006, quant-ph/0602040.

[96]  Sergey P. Vyatchanin,et al.  Quantum variation measurement of a force , 1995 .

[97]  Peter Fritschel,et al.  DC readout experiment in Enhanced LIGO , 2011, 1110.2815.

[98]  Schumaker,et al.  New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. , 1985, Physical review. A, General physics.

[99]  S. Danilishin,et al.  Practical design of the optical lever intracavity topology of gravitational-wave detectors , 2006 .

[100]  H. Müller-Ebhardt On quantum effects in the dynamics of macroscopic test masses , 2009 .

[101]  S. Reynaud,et al.  Quantum Limits in Interferometric Measurements , 1990, quant-ph/0101104.

[102]  J. Smith,et al.  The path to the enhanced and advanced LIGO gravitational-wave detectors , 2009, 0902.0381.

[103]  V. Braginskii Classical and Quantum Restrictions on the Detection of Weak Disturbances of a Macroscopic Oscillator , 1968 .

[104]  M. Rakhmanov Dynamics of laser interferometric gravitational wave detectors , 2000 .

[105]  Rüdiger Paschotta,et al.  Noise of mode-locked lasers (Part I): numerical model , 2004 .

[106]  Joshua R. Smith,et al.  LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.

[107]  A. Clerk,et al.  Back-action evasion and squeezing of a mechanical resonator using a cavity detector , 2008, 0802.1842.

[108]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[109]  M. M. Casey,et al.  The GEO-HF project , 2006 .

[110]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[111]  Vladimir B. Braginskii,et al.  Optimal quantum measurements in detectors of gravitation radiation , 1978 .

[112]  G. M. Harry,et al.  Optical coatings and thermal noise in precision measurement , 2011 .

[113]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[114]  Karsten Danzmann,et al.  Local readout enhancement for detuned signal-recycling interferometers , 2007 .

[115]  F. Khalili,et al.  QND measurements for future gravitational-wave detectors , 2009, 0910.0319.

[116]  Jeanette G. Grasselli,et al.  “On the Relative Motion of the Earth and the Luminiferous Ether” , 1987 .

[117]  K. Postnov,et al.  The Evolution of Compact Binary Star Systems , 2006, Living reviews in relativity.

[118]  Yanbei Chen,et al.  Quantum noise in second generation, signal recycled laser interferometric gravitational wave detectors , 2001 .

[119]  Charles C. Harb,et al.  Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source , 1997 .

[120]  Gerd Leuchs,et al.  Squeezed States for Interferometric Gravitational-wave Detectors , 1987 .

[121]  V. Braginskii,et al.  Quantum-mechanical limitations in macroscopic experiments and modern experimental technique , 1975 .

[122]  R. Lindsay,et al.  General relativity and gravitational waves , 1962 .

[123]  Karsten Danzmann,et al.  The GEO 600 squeezed light source , 2010, 1004.4975.

[124]  P. Purdue Analysis of a quantum nondemolition speed-meter interferometer , 2002 .

[125]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[126]  C. Caves,et al.  Coherent quantum-noise cancellation for optomechanical sensors. , 2010, Physical review letters.

[127]  W. Schleich Quantum Optics in Phase Space: SCHLEICH:QUANTUM OPTICS O-BK , 2005 .

[128]  A. Sawadsky,et al.  Laser interferometry with translucent and absorbing mechanical oscillators , 2011, 1104.3251.

[129]  R L Byer,et al.  Polarization Sagnac interferometer with postmodulation for gravitational-wave detection. , 1999, Optics letters.

[130]  A. Matsko,et al.  Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization , 2001, gr-qc/0109003.

[131]  Yanbei Chen,et al.  Signal recycled laser-interferometer gravitational-wave detectors as optical springs , 2002 .

[132]  V. Quetschke,et al.  Intensity and frequency noise reduction of a Nd:YAG NPRO via pump light stabilisation , 2006 .

[133]  Markus Aspelmeyer,et al.  Quantum optomechanics—throwing a glance [Invited] , 2010, 1005.5518.

[134]  J. Vinet On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors , 2009, Living reviews in relativity.

[135]  G. Heinzel Advanced optical techniques for laser-interferometric gravitational-wave detectors , 1999 .

[136]  R. Schnabel,et al.  Quantum state preparation and macroscopic entanglement in gravitational-wave detectors , 2009, 0903.0079.

[137]  G. Russo,et al.  Virgo upgrade investigations , 2006 .

[138]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[139]  S. Rowan,et al.  THE DETECTION OF GRAVITATIONAL WAVES , 1999 .

[140]  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[141]  Yanbei Chen Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector , 2003 .

[142]  W. Bonnor,et al.  Gravitational Radiation , 1958, Nature.

[143]  F. Khalili Quantum speedmeter and laser interferometric gravitational-wave antennae , 2002 .

[144]  M. Fejer,et al.  Polarization Sagnac interferometer with a reflective grating beam splitter. , 2000, Optics letters.

[145]  Andrey B. Matsko,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2001 .

[146]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[147]  S. Kawamura,et al.  Erratum: Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes [Phys. Rev. D 73, 122005 (2006)] , 2007 .

[148]  Demonstration of detuned dual recycling at the Garching 30 m laser interferometer , 2000, gr-qc/0006026.

[149]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[150]  K. Thorne,et al.  Quantum Nondemolition Measurements , 1980, Science.

[151]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[152]  Martin M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[153]  Karsten Danzmann,et al.  Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. , 2007, Physical review letters.

[154]  Vinet,et al.  Optimization of long-baseline optical interferometers for gravitational-wave detection. , 1988, Physical review. D, Particles and fields.